core/sync/
atomic.rs

1//! Atomic types
2//!
3//! Atomic types provide primitive shared-memory communication between
4//! threads, and are the building blocks of other concurrent
5//! types.
6//!
7//! This module defines atomic versions of a select number of primitive
8//! types, including [`AtomicBool`], [`AtomicIsize`], [`AtomicUsize`],
9//! [`AtomicI8`], [`AtomicU16`], etc.
10//! Atomic types present operations that, when used correctly, synchronize
11//! updates between threads.
12//!
13//! Atomic variables are safe to share between threads (they implement [`Sync`])
14//! but they do not themselves provide the mechanism for sharing and follow the
15//! [threading model](../../../std/thread/index.html#the-threading-model) of Rust.
16//! The most common way to share an atomic variable is to put it into an [`Arc`][arc] (an
17//! atomically-reference-counted shared pointer).
18//!
19//! [arc]: ../../../std/sync/struct.Arc.html
20//!
21//! Atomic types may be stored in static variables, initialized using
22//! the constant initializers like [`AtomicBool::new`]. Atomic statics
23//! are often used for lazy global initialization.
24//!
25//! ## Memory model for atomic accesses
26//!
27//! Rust atomics currently follow the same rules as [C++20 atomics][cpp], specifically the rules
28//! from the [`intro.races`][cpp-intro.races] section, without the "consume" memory ordering. Since
29//! C++ uses an object-based memory model whereas Rust is access-based, a bit of translation work
30//! has to be done to apply the C++ rules to Rust: whenever C++ talks about "the value of an
31//! object", we understand that to mean the resulting bytes obtained when doing a read. When the C++
32//! standard talks about "the value of an atomic object", this refers to the result of doing an
33//! atomic load (via the operations provided in this module). A "modification of an atomic object"
34//! refers to an atomic store.
35//!
36//! The end result is *almost* equivalent to saying that creating a *shared reference* to one of the
37//! Rust atomic types corresponds to creating an `atomic_ref` in C++, with the `atomic_ref` being
38//! destroyed when the lifetime of the shared reference ends. The main difference is that Rust
39//! permits concurrent atomic and non-atomic reads to the same memory as those cause no issue in the
40//! C++ memory model, they are just forbidden in C++ because memory is partitioned into "atomic
41//! objects" and "non-atomic objects" (with `atomic_ref` temporarily converting a non-atomic object
42//! into an atomic object).
43//!
44//! The most important aspect of this model is that *data races* are undefined behavior. A data race
45//! is defined as conflicting non-synchronized accesses where at least one of the accesses is
46//! non-atomic. Here, accesses are *conflicting* if they affect overlapping regions of memory and at
47//! least one of them is a write. (A `compare_exchange` or `compare_exchange_weak` that does not
48//! succeed is not considered a write.) They are *non-synchronized* if neither of them
49//! *happens-before* the other, according to the happens-before order of the memory model.
50//!
51//! The other possible cause of undefined behavior in the memory model are mixed-size accesses: Rust
52//! inherits the C++ limitation that non-synchronized conflicting atomic accesses may not partially
53//! overlap. In other words, every pair of non-synchronized atomic accesses must be either disjoint,
54//! access the exact same memory (including using the same access size), or both be reads.
55//!
56//! Each atomic access takes an [`Ordering`] which defines how the operation interacts with the
57//! happens-before order. These orderings behave the same as the corresponding [C++20 atomic
58//! orderings][cpp_memory_order]. For more information, see the [nomicon].
59//!
60//! [cpp]: https://en.cppreference.com/w/cpp/atomic
61//! [cpp-intro.races]: https://timsong-cpp.github.io/cppwp/n4868/intro.multithread#intro.races
62//! [cpp_memory_order]: https://en.cppreference.com/w/cpp/atomic/memory_order
63//! [nomicon]: ../../../nomicon/atomics.html
64//!
65//! ```rust,no_run undefined_behavior
66//! use std::sync::atomic::{AtomicU16, AtomicU8, Ordering};
67//! use std::mem::transmute;
68//! use std::thread;
69//!
70//! let atomic = AtomicU16::new(0);
71//!
72//! thread::scope(|s| {
73//!     // This is UB: conflicting non-synchronized accesses, at least one of which is non-atomic.
74//!     s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
75//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
76//! });
77//!
78//! thread::scope(|s| {
79//!     // This is fine: the accesses do not conflict (as none of them performs any modification).
80//!     // In C++ this would be disallowed since creating an `atomic_ref` precludes
81//!     // further non-atomic accesses, but Rust does not have that limitation.
82//!     s.spawn(|| atomic.load(Ordering::Relaxed)); // atomic load
83//!     s.spawn(|| unsafe { atomic.as_ptr().read() }); // non-atomic read
84//! });
85//!
86//! thread::scope(|s| {
87//!     // This is fine: `join` synchronizes the code in a way such that the atomic
88//!     // store happens-before the non-atomic write.
89//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
90//!     handle.join().expect("thread won't panic"); // synchronize
91//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
92//! });
93//!
94//! thread::scope(|s| {
95//!     // This is UB: non-synchronized conflicting differently-sized atomic accesses.
96//!     s.spawn(|| atomic.store(1, Ordering::Relaxed));
97//!     s.spawn(|| unsafe {
98//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
99//!         differently_sized.store(2, Ordering::Relaxed);
100//!     });
101//! });
102//!
103//! thread::scope(|s| {
104//!     // This is fine: `join` synchronizes the code in a way such that
105//!     // the 1-byte store happens-before the 2-byte store.
106//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed));
107//!     handle.join().expect("thread won't panic");
108//!     s.spawn(|| unsafe {
109//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
110//!         differently_sized.store(2, Ordering::Relaxed);
111//!     });
112//! });
113//! ```
114//!
115//! # Portability
116//!
117//! All atomic types in this module are guaranteed to be [lock-free] if they're
118//! available. This means they don't internally acquire a global mutex. Atomic
119//! types and operations are not guaranteed to be wait-free. This means that
120//! operations like `fetch_or` may be implemented with a compare-and-swap loop.
121//!
122//! Atomic operations may be implemented at the instruction layer with
123//! larger-size atomics. For example some platforms use 4-byte atomic
124//! instructions to implement `AtomicI8`. Note that this emulation should not
125//! have an impact on correctness of code, it's just something to be aware of.
126//!
127//! The atomic types in this module might not be available on all platforms. The
128//! atomic types here are all widely available, however, and can generally be
129//! relied upon existing. Some notable exceptions are:
130//!
131//! * PowerPC and MIPS platforms with 32-bit pointers do not have `AtomicU64` or
132//!   `AtomicI64` types.
133//! * Legacy ARM platforms like ARMv4T and ARMv5TE have very limited hardware
134//!   support for atomics. The bare-metal targets disable this module
135//!   entirely, but the Linux targets [use the kernel] to assist (which comes
136//!   with a performance penalty). It's not until ARMv6K onwards that ARM CPUs
137//!   have support for load/store and Compare and Swap (CAS) atomics in hardware.
138//! * ARMv6-M and ARMv8-M baseline targets (`thumbv6m-*` and
139//!   `thumbv8m.base-*`) only provide `load` and `store` operations, and do
140//!   not support Compare and Swap (CAS) operations, such as `swap`,
141//!   `fetch_add`, etc. Full CAS support is available on ARMv7-M and ARMv8-M
142//!   Mainline (`thumbv7m-*`, `thumbv7em*` and `thumbv8m.main-*`).
143//!
144//! [use the kernel]: https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
145//!
146//! Note that future platforms may be added that also do not have support for
147//! some atomic operations. Maximally portable code will want to be careful
148//! about which atomic types are used. `AtomicUsize` and `AtomicIsize` are
149//! generally the most portable, but even then they're not available everywhere.
150//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
151//! `core` does not.
152//!
153//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
154//! compile based on the target's supported bit widths. It is a key-value
155//! option set for each supported size, with values "8", "16", "32", "64",
156//! "128", and "ptr" for pointer-sized atomics.
157//!
158//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
159//!
160//! # Atomic accesses to read-only memory
161//!
162//! In general, *all* atomic accesses on read-only memory are undefined behavior. For instance, attempting
163//! to do a `compare_exchange` that will definitely fail (making it conceptually a read-only
164//! operation) can still cause a segmentation fault if the underlying memory page is mapped read-only. Since
165//! atomic `load`s might be implemented using compare-exchange operations, even a `load` can fault
166//! on read-only memory.
167//!
168//! For the purpose of this section, "read-only memory" is defined as memory that is read-only in
169//! the underlying target, i.e., the pages are mapped with a read-only flag and any attempt to write
170//! will cause a page fault. In particular, an `&u128` reference that points to memory that is
171//! read-write mapped is *not* considered to point to "read-only memory". In Rust, almost all memory
172//! is read-write; the only exceptions are memory created by `const` items or `static` items without
173//! interior mutability, and memory that was specifically marked as read-only by the operating
174//! system via platform-specific APIs.
175//!
176//! As an exception from the general rule stated above, "sufficiently small" atomic loads with
177//! `Ordering::Relaxed` are implemented in a way that works on read-only memory, and are hence not
178//! undefined behavior. The exact size limit for what makes a load "sufficiently small" varies
179//! depending on the target:
180//!
181//! | `target_arch` | Size limit |
182//! |---------------|---------|
183//! | `x86`, `arm`, `loongarch32`, `mips`, `mips32r6`, `powerpc`, `riscv32`, `sparc`, `hexagon` | 4 bytes |
184//! | `x86_64`, `aarch64`, `loongarch64`, `mips64`, `mips64r6`, `powerpc64`, `riscv64`, `sparc64`, `s390x` | 8 bytes |
185//!
186//! Atomics loads that are larger than this limit as well as atomic loads with ordering other
187//! than `Relaxed`, as well as *all* atomic loads on targets not listed in the table, might still be
188//! read-only under certain conditions, but that is not a stable guarantee and should not be relied
189//! upon.
190//!
191//! If you need to do an acquire load on read-only memory, you can do a relaxed load followed by an
192//! acquire fence instead.
193//!
194//! # Examples
195//!
196//! A simple spinlock:
197//!
198//! ```ignore-wasm
199//! use std::sync::Arc;
200//! use std::sync::atomic::{AtomicUsize, Ordering};
201//! use std::{hint, thread};
202//!
203//! fn main() {
204//!     let spinlock = Arc::new(AtomicUsize::new(1));
205//!
206//!     let spinlock_clone = Arc::clone(&spinlock);
207//!
208//!     let thread = thread::spawn(move || {
209//!         spinlock_clone.store(0, Ordering::Release);
210//!     });
211//!
212//!     // Wait for the other thread to release the lock
213//!     while spinlock.load(Ordering::Acquire) != 0 {
214//!         hint::spin_loop();
215//!     }
216//!
217//!     if let Err(panic) = thread.join() {
218//!         println!("Thread had an error: {panic:?}");
219//!     }
220//! }
221//! ```
222//!
223//! Keep a global count of live threads:
224//!
225//! ```
226//! use std::sync::atomic::{AtomicUsize, Ordering};
227//!
228//! static GLOBAL_THREAD_COUNT: AtomicUsize = AtomicUsize::new(0);
229//!
230//! // Note that Relaxed ordering doesn't synchronize anything
231//! // except the global thread counter itself.
232//! let old_thread_count = GLOBAL_THREAD_COUNT.fetch_add(1, Ordering::Relaxed);
233//! // Note that this number may not be true at the moment of printing
234//! // because some other thread may have changed static value already.
235//! println!("live threads: {}", old_thread_count + 1);
236//! ```
237
238#![stable(feature = "rust1", since = "1.0.0")]
239#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
240#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(unused_imports))]
241#![rustc_diagnostic_item = "atomic_mod"]
242// Clippy complains about the pattern of "safe function calling unsafe function taking pointers".
243// This happens with AtomicPtr intrinsics but is fine, as the pointers clippy is concerned about
244// are just normal values that get loaded/stored, but not dereferenced.
245#![allow(clippy::not_unsafe_ptr_arg_deref)]
246
247use self::Ordering::*;
248use crate::cell::UnsafeCell;
249use crate::hint::spin_loop;
250use crate::intrinsics::AtomicOrdering as AO;
251use crate::{fmt, intrinsics};
252
253trait Sealed {}
254
255/// A marker trait for primitive types which can be modified atomically.
256///
257/// This is an implementation detail for <code>[Atomic]\<T></code> which may disappear or be replaced at any time.
258///
259/// # Safety
260///
261/// Types implementing this trait must be primitives that can be modified atomically.
262///
263/// The associated `Self::AtomicInner` type must have the same size and bit validity as `Self`,
264/// but may have a higher alignment requirement, so the following `transmute`s are sound:
265///
266/// - `&mut Self::AtomicInner` as `&mut Self`
267/// - `Self` as `Self::AtomicInner` or the reverse
268#[unstable(
269    feature = "atomic_internals",
270    reason = "implementation detail which may disappear or be replaced at any time",
271    issue = "none"
272)]
273#[expect(private_bounds)]
274pub unsafe trait AtomicPrimitive: Sized + Copy + Sealed {
275    /// Temporary implementation detail.
276    type AtomicInner: Sized;
277}
278
279macro impl_atomic_primitive(
280    $Atom:ident $(<$T:ident>)? ($Primitive:ty),
281    size($size:literal),
282    align($align:literal) $(,)?
283) {
284    impl $(<$T>)? Sealed for $Primitive {}
285
286    #[unstable(
287        feature = "atomic_internals",
288        reason = "implementation detail which may disappear or be replaced at any time",
289        issue = "none"
290    )]
291    #[cfg(target_has_atomic_load_store = $size)]
292    unsafe impl $(<$T>)? AtomicPrimitive for $Primitive {
293        type AtomicInner = $Atom $(<$T>)?;
294    }
295}
296
297impl_atomic_primitive!(AtomicBool(bool), size("8"), align(1));
298impl_atomic_primitive!(AtomicI8(i8), size("8"), align(1));
299impl_atomic_primitive!(AtomicU8(u8), size("8"), align(1));
300impl_atomic_primitive!(AtomicI16(i16), size("16"), align(2));
301impl_atomic_primitive!(AtomicU16(u16), size("16"), align(2));
302impl_atomic_primitive!(AtomicI32(i32), size("32"), align(4));
303impl_atomic_primitive!(AtomicU32(u32), size("32"), align(4));
304impl_atomic_primitive!(AtomicI64(i64), size("64"), align(8));
305impl_atomic_primitive!(AtomicU64(u64), size("64"), align(8));
306impl_atomic_primitive!(AtomicI128(i128), size("128"), align(16));
307impl_atomic_primitive!(AtomicU128(u128), size("128"), align(16));
308
309#[cfg(target_pointer_width = "16")]
310impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(2));
311#[cfg(target_pointer_width = "32")]
312impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(4));
313#[cfg(target_pointer_width = "64")]
314impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(8));
315
316#[cfg(target_pointer_width = "16")]
317impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(2));
318#[cfg(target_pointer_width = "32")]
319impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(4));
320#[cfg(target_pointer_width = "64")]
321impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(8));
322
323#[cfg(target_pointer_width = "16")]
324impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(2));
325#[cfg(target_pointer_width = "32")]
326impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(4));
327#[cfg(target_pointer_width = "64")]
328impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(8));
329
330/// A memory location which can be safely modified from multiple threads.
331///
332/// This has the same size and bit validity as the underlying type `T`. However,
333/// the alignment of this type is always equal to its size, even on targets where
334/// `T` has alignment less than its size.
335///
336/// For more about the differences between atomic types and non-atomic types as
337/// well as information about the portability of this type, please see the
338/// [module-level documentation].
339///
340/// **Note:** This type is only available on platforms that support atomic loads
341/// and stores of `T`.
342///
343/// [module-level documentation]: crate::sync::atomic
344#[unstable(feature = "generic_atomic", issue = "130539")]
345pub type Atomic<T> = <T as AtomicPrimitive>::AtomicInner;
346
347// Some architectures don't have byte-sized atomics, which results in LLVM
348// emulating them using a LL/SC loop. However for AtomicBool we can take
349// advantage of the fact that it only ever contains 0 or 1 and use atomic OR/AND
350// instead, which LLVM can emulate using a larger atomic OR/AND operation.
351//
352// This list should only contain architectures which have word-sized atomic-or/
353// atomic-and instructions but don't natively support byte-sized atomics.
354#[cfg(target_has_atomic = "8")]
355const EMULATE_ATOMIC_BOOL: bool = cfg!(any(
356    target_arch = "riscv32",
357    target_arch = "riscv64",
358    target_arch = "loongarch32",
359    target_arch = "loongarch64"
360));
361
362/// A boolean type which can be safely shared between threads.
363///
364/// This type has the same size, alignment, and bit validity as a [`bool`].
365///
366/// **Note**: This type is only available on platforms that support atomic
367/// loads and stores of `u8`.
368#[cfg(target_has_atomic_load_store = "8")]
369#[stable(feature = "rust1", since = "1.0.0")]
370#[rustc_diagnostic_item = "AtomicBool"]
371#[repr(C, align(1))]
372pub struct AtomicBool {
373    v: UnsafeCell<u8>,
374}
375
376#[cfg(target_has_atomic_load_store = "8")]
377#[stable(feature = "rust1", since = "1.0.0")]
378impl Default for AtomicBool {
379    /// Creates an `AtomicBool` initialized to `false`.
380    #[inline]
381    fn default() -> Self {
382        Self::new(false)
383    }
384}
385
386// Send is implicitly implemented for AtomicBool.
387#[cfg(target_has_atomic_load_store = "8")]
388#[stable(feature = "rust1", since = "1.0.0")]
389unsafe impl Sync for AtomicBool {}
390
391/// A raw pointer type which can be safely shared between threads.
392///
393/// This type has the same size and bit validity as a `*mut T`.
394///
395/// **Note**: This type is only available on platforms that support atomic
396/// loads and stores of pointers. Its size depends on the target pointer's size.
397#[cfg(target_has_atomic_load_store = "ptr")]
398#[stable(feature = "rust1", since = "1.0.0")]
399#[rustc_diagnostic_item = "AtomicPtr"]
400#[cfg_attr(target_pointer_width = "16", repr(C, align(2)))]
401#[cfg_attr(target_pointer_width = "32", repr(C, align(4)))]
402#[cfg_attr(target_pointer_width = "64", repr(C, align(8)))]
403pub struct AtomicPtr<T> {
404    p: UnsafeCell<*mut T>,
405}
406
407#[cfg(target_has_atomic_load_store = "ptr")]
408#[stable(feature = "rust1", since = "1.0.0")]
409impl<T> Default for AtomicPtr<T> {
410    /// Creates a null `AtomicPtr<T>`.
411    fn default() -> AtomicPtr<T> {
412        AtomicPtr::new(crate::ptr::null_mut())
413    }
414}
415
416#[cfg(target_has_atomic_load_store = "ptr")]
417#[stable(feature = "rust1", since = "1.0.0")]
418unsafe impl<T> Send for AtomicPtr<T> {}
419#[cfg(target_has_atomic_load_store = "ptr")]
420#[stable(feature = "rust1", since = "1.0.0")]
421unsafe impl<T> Sync for AtomicPtr<T> {}
422
423/// Atomic memory orderings
424///
425/// Memory orderings specify the way atomic operations synchronize memory.
426/// In its weakest [`Ordering::Relaxed`], only the memory directly touched by the
427/// operation is synchronized. On the other hand, a store-load pair of [`Ordering::SeqCst`]
428/// operations synchronize other memory while additionally preserving a total order of such
429/// operations across all threads.
430///
431/// Rust's memory orderings are [the same as those of
432/// C++20](https://en.cppreference.com/w/cpp/atomic/memory_order).
433///
434/// For more information see the [nomicon].
435///
436/// [nomicon]: ../../../nomicon/atomics.html
437#[stable(feature = "rust1", since = "1.0.0")]
438#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
439#[non_exhaustive]
440#[rustc_diagnostic_item = "Ordering"]
441pub enum Ordering {
442    /// No ordering constraints, only atomic operations.
443    ///
444    /// Corresponds to [`memory_order_relaxed`] in C++20.
445    ///
446    /// [`memory_order_relaxed`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
447    #[stable(feature = "rust1", since = "1.0.0")]
448    Relaxed,
449    /// When coupled with a store, all previous operations become ordered
450    /// before any load of this value with [`Acquire`] (or stronger) ordering.
451    /// In particular, all previous writes become visible to all threads
452    /// that perform an [`Acquire`] (or stronger) load of this value.
453    ///
454    /// Notice that using this ordering for an operation that combines loads
455    /// and stores leads to a [`Relaxed`] load operation!
456    ///
457    /// This ordering is only applicable for operations that can perform a store.
458    ///
459    /// Corresponds to [`memory_order_release`] in C++20.
460    ///
461    /// [`memory_order_release`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
462    #[stable(feature = "rust1", since = "1.0.0")]
463    Release,
464    /// When coupled with a load, if the loaded value was written by a store operation with
465    /// [`Release`] (or stronger) ordering, then all subsequent operations
466    /// become ordered after that store. In particular, all subsequent loads will see data
467    /// written before the store.
468    ///
469    /// Notice that using this ordering for an operation that combines loads
470    /// and stores leads to a [`Relaxed`] store operation!
471    ///
472    /// This ordering is only applicable for operations that can perform a load.
473    ///
474    /// Corresponds to [`memory_order_acquire`] in C++20.
475    ///
476    /// [`memory_order_acquire`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
477    #[stable(feature = "rust1", since = "1.0.0")]
478    Acquire,
479    /// Has the effects of both [`Acquire`] and [`Release`] together:
480    /// For loads it uses [`Acquire`] ordering. For stores it uses the [`Release`] ordering.
481    ///
482    /// Notice that in the case of `compare_and_swap`, it is possible that the operation ends up
483    /// not performing any store and hence it has just [`Acquire`] ordering. However,
484    /// `AcqRel` will never perform [`Relaxed`] accesses.
485    ///
486    /// This ordering is only applicable for operations that combine both loads and stores.
487    ///
488    /// Corresponds to [`memory_order_acq_rel`] in C++20.
489    ///
490    /// [`memory_order_acq_rel`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
491    #[stable(feature = "rust1", since = "1.0.0")]
492    AcqRel,
493    /// Like [`Acquire`]/[`Release`]/[`AcqRel`] (for load, store, and load-with-store
494    /// operations, respectively) with the additional guarantee that all threads see all
495    /// sequentially consistent operations in the same order.
496    ///
497    /// Corresponds to [`memory_order_seq_cst`] in C++20.
498    ///
499    /// [`memory_order_seq_cst`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering
500    #[stable(feature = "rust1", since = "1.0.0")]
501    SeqCst,
502}
503
504/// An [`AtomicBool`] initialized to `false`.
505#[cfg(target_has_atomic_load_store = "8")]
506#[stable(feature = "rust1", since = "1.0.0")]
507#[deprecated(
508    since = "1.34.0",
509    note = "the `new` function is now preferred",
510    suggestion = "AtomicBool::new(false)"
511)]
512pub const ATOMIC_BOOL_INIT: AtomicBool = AtomicBool::new(false);
513
514#[cfg(target_has_atomic_load_store = "8")]
515impl AtomicBool {
516    /// Creates a new `AtomicBool`.
517    ///
518    /// # Examples
519    ///
520    /// ```
521    /// use std::sync::atomic::AtomicBool;
522    ///
523    /// let atomic_true = AtomicBool::new(true);
524    /// let atomic_false = AtomicBool::new(false);
525    /// ```
526    #[inline]
527    #[stable(feature = "rust1", since = "1.0.0")]
528    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
529    #[must_use]
530    pub const fn new(v: bool) -> AtomicBool {
531        AtomicBool { v: UnsafeCell::new(v as u8) }
532    }
533
534    /// Creates a new `AtomicBool` from a pointer.
535    ///
536    /// # Examples
537    ///
538    /// ```
539    /// use std::sync::atomic::{self, AtomicBool};
540    ///
541    /// // Get a pointer to an allocated value
542    /// let ptr: *mut bool = Box::into_raw(Box::new(false));
543    ///
544    /// assert!(ptr.cast::<AtomicBool>().is_aligned());
545    ///
546    /// {
547    ///     // Create an atomic view of the allocated value
548    ///     let atomic = unsafe { AtomicBool::from_ptr(ptr) };
549    ///
550    ///     // Use `atomic` for atomic operations, possibly share it with other threads
551    ///     atomic.store(true, atomic::Ordering::Relaxed);
552    /// }
553    ///
554    /// // It's ok to non-atomically access the value behind `ptr`,
555    /// // since the reference to the atomic ended its lifetime in the block above
556    /// assert_eq!(unsafe { *ptr }, true);
557    ///
558    /// // Deallocate the value
559    /// unsafe { drop(Box::from_raw(ptr)) }
560    /// ```
561    ///
562    /// # Safety
563    ///
564    /// * `ptr` must be aligned to `align_of::<AtomicBool>()` (note that this is always true, since
565    ///   `align_of::<AtomicBool>() == 1`).
566    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
567    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
568    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
569    ///   sizes, without synchronization.
570    ///
571    /// [valid]: crate::ptr#safety
572    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
573    #[inline]
574    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
575    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
576    pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool {
577        // SAFETY: guaranteed by the caller
578        unsafe { &*ptr.cast() }
579    }
580
581    /// Returns a mutable reference to the underlying [`bool`].
582    ///
583    /// This is safe because the mutable reference guarantees that no other threads are
584    /// concurrently accessing the atomic data.
585    ///
586    /// # Examples
587    ///
588    /// ```
589    /// use std::sync::atomic::{AtomicBool, Ordering};
590    ///
591    /// let mut some_bool = AtomicBool::new(true);
592    /// assert_eq!(*some_bool.get_mut(), true);
593    /// *some_bool.get_mut() = false;
594    /// assert_eq!(some_bool.load(Ordering::SeqCst), false);
595    /// ```
596    #[inline]
597    #[stable(feature = "atomic_access", since = "1.15.0")]
598    pub fn get_mut(&mut self) -> &mut bool {
599        // SAFETY: the mutable reference guarantees unique ownership.
600        unsafe { &mut *(self.v.get() as *mut bool) }
601    }
602
603    /// Gets atomic access to a `&mut bool`.
604    ///
605    /// # Examples
606    ///
607    /// ```
608    /// #![feature(atomic_from_mut)]
609    /// use std::sync::atomic::{AtomicBool, Ordering};
610    ///
611    /// let mut some_bool = true;
612    /// let a = AtomicBool::from_mut(&mut some_bool);
613    /// a.store(false, Ordering::Relaxed);
614    /// assert_eq!(some_bool, false);
615    /// ```
616    #[inline]
617    #[cfg(target_has_atomic_equal_alignment = "8")]
618    #[unstable(feature = "atomic_from_mut", issue = "76314")]
619    pub fn from_mut(v: &mut bool) -> &mut Self {
620        // SAFETY: the mutable reference guarantees unique ownership, and
621        // alignment of both `bool` and `Self` is 1.
622        unsafe { &mut *(v as *mut bool as *mut Self) }
623    }
624
625    /// Gets non-atomic access to a `&mut [AtomicBool]` slice.
626    ///
627    /// This is safe because the mutable reference guarantees that no other threads are
628    /// concurrently accessing the atomic data.
629    ///
630    /// # Examples
631    ///
632    /// ```ignore-wasm
633    /// #![feature(atomic_from_mut)]
634    /// use std::sync::atomic::{AtomicBool, Ordering};
635    ///
636    /// let mut some_bools = [const { AtomicBool::new(false) }; 10];
637    ///
638    /// let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
639    /// assert_eq!(view, [false; 10]);
640    /// view[..5].copy_from_slice(&[true; 5]);
641    ///
642    /// std::thread::scope(|s| {
643    ///     for t in &some_bools[..5] {
644    ///         s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
645    ///     }
646    ///
647    ///     for f in &some_bools[5..] {
648    ///         s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
649    ///     }
650    /// });
651    /// ```
652    #[inline]
653    #[unstable(feature = "atomic_from_mut", issue = "76314")]
654    pub fn get_mut_slice(this: &mut [Self]) -> &mut [bool] {
655        // SAFETY: the mutable reference guarantees unique ownership.
656        unsafe { &mut *(this as *mut [Self] as *mut [bool]) }
657    }
658
659    /// Gets atomic access to a `&mut [bool]` slice.
660    ///
661    /// # Examples
662    ///
663    /// ```rust,ignore-wasm
664    /// #![feature(atomic_from_mut)]
665    /// use std::sync::atomic::{AtomicBool, Ordering};
666    ///
667    /// let mut some_bools = [false; 10];
668    /// let a = &*AtomicBool::from_mut_slice(&mut some_bools);
669    /// std::thread::scope(|s| {
670    ///     for i in 0..a.len() {
671    ///         s.spawn(move || a[i].store(true, Ordering::Relaxed));
672    ///     }
673    /// });
674    /// assert_eq!(some_bools, [true; 10]);
675    /// ```
676    #[inline]
677    #[cfg(target_has_atomic_equal_alignment = "8")]
678    #[unstable(feature = "atomic_from_mut", issue = "76314")]
679    pub fn from_mut_slice(v: &mut [bool]) -> &mut [Self] {
680        // SAFETY: the mutable reference guarantees unique ownership, and
681        // alignment of both `bool` and `Self` is 1.
682        unsafe { &mut *(v as *mut [bool] as *mut [Self]) }
683    }
684
685    /// Consumes the atomic and returns the contained value.
686    ///
687    /// This is safe because passing `self` by value guarantees that no other threads are
688    /// concurrently accessing the atomic data.
689    ///
690    /// # Examples
691    ///
692    /// ```
693    /// use std::sync::atomic::AtomicBool;
694    ///
695    /// let some_bool = AtomicBool::new(true);
696    /// assert_eq!(some_bool.into_inner(), true);
697    /// ```
698    #[inline]
699    #[stable(feature = "atomic_access", since = "1.15.0")]
700    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
701    pub const fn into_inner(self) -> bool {
702        self.v.into_inner() != 0
703    }
704
705    /// Loads a value from the bool.
706    ///
707    /// `load` takes an [`Ordering`] argument which describes the memory ordering
708    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
709    ///
710    /// # Panics
711    ///
712    /// Panics if `order` is [`Release`] or [`AcqRel`].
713    ///
714    /// # Examples
715    ///
716    /// ```
717    /// use std::sync::atomic::{AtomicBool, Ordering};
718    ///
719    /// let some_bool = AtomicBool::new(true);
720    ///
721    /// assert_eq!(some_bool.load(Ordering::Relaxed), true);
722    /// ```
723    #[inline]
724    #[stable(feature = "rust1", since = "1.0.0")]
725    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
726    pub fn load(&self, order: Ordering) -> bool {
727        // SAFETY: any data races are prevented by atomic intrinsics and the raw
728        // pointer passed in is valid because we got it from a reference.
729        unsafe { atomic_load(self.v.get(), order) != 0 }
730    }
731
732    /// Stores a value into the bool.
733    ///
734    /// `store` takes an [`Ordering`] argument which describes the memory ordering
735    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
736    ///
737    /// # Panics
738    ///
739    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
740    ///
741    /// # Examples
742    ///
743    /// ```
744    /// use std::sync::atomic::{AtomicBool, Ordering};
745    ///
746    /// let some_bool = AtomicBool::new(true);
747    ///
748    /// some_bool.store(false, Ordering::Relaxed);
749    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
750    /// ```
751    #[inline]
752    #[stable(feature = "rust1", since = "1.0.0")]
753    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
754    #[rustc_should_not_be_called_on_const_items]
755    pub fn store(&self, val: bool, order: Ordering) {
756        // SAFETY: any data races are prevented by atomic intrinsics and the raw
757        // pointer passed in is valid because we got it from a reference.
758        unsafe {
759            atomic_store(self.v.get(), val as u8, order);
760        }
761    }
762
763    /// Stores a value into the bool, returning the previous value.
764    ///
765    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
766    /// of this operation. All ordering modes are possible. Note that using
767    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
768    /// using [`Release`] makes the load part [`Relaxed`].
769    ///
770    /// **Note:** This method is only available on platforms that support atomic
771    /// operations on `u8`.
772    ///
773    /// # Examples
774    ///
775    /// ```
776    /// use std::sync::atomic::{AtomicBool, Ordering};
777    ///
778    /// let some_bool = AtomicBool::new(true);
779    ///
780    /// assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
781    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
782    /// ```
783    #[inline]
784    #[stable(feature = "rust1", since = "1.0.0")]
785    #[cfg(target_has_atomic = "8")]
786    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
787    #[rustc_should_not_be_called_on_const_items]
788    pub fn swap(&self, val: bool, order: Ordering) -> bool {
789        if EMULATE_ATOMIC_BOOL {
790            if val { self.fetch_or(true, order) } else { self.fetch_and(false, order) }
791        } else {
792            // SAFETY: data races are prevented by atomic intrinsics.
793            unsafe { atomic_swap(self.v.get(), val as u8, order) != 0 }
794        }
795    }
796
797    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
798    ///
799    /// The return value is always the previous value. If it is equal to `current`, then the value
800    /// was updated.
801    ///
802    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
803    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
804    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
805    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
806    /// happens, and using [`Release`] makes the load part [`Relaxed`].
807    ///
808    /// **Note:** This method is only available on platforms that support atomic
809    /// operations on `u8`.
810    ///
811    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
812    ///
813    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
814    /// memory orderings:
815    ///
816    /// Original | Success | Failure
817    /// -------- | ------- | -------
818    /// Relaxed  | Relaxed | Relaxed
819    /// Acquire  | Acquire | Acquire
820    /// Release  | Release | Relaxed
821    /// AcqRel   | AcqRel  | Acquire
822    /// SeqCst   | SeqCst  | SeqCst
823    ///
824    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
825    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
826    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
827    /// rather than to infer success vs failure based on the value that was read.
828    ///
829    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
830    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
831    /// which allows the compiler to generate better assembly code when the compare and swap
832    /// is used in a loop.
833    ///
834    /// # Examples
835    ///
836    /// ```
837    /// use std::sync::atomic::{AtomicBool, Ordering};
838    ///
839    /// let some_bool = AtomicBool::new(true);
840    ///
841    /// assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
842    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
843    ///
844    /// assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
845    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
846    /// ```
847    #[inline]
848    #[stable(feature = "rust1", since = "1.0.0")]
849    #[deprecated(
850        since = "1.50.0",
851        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
852    )]
853    #[cfg(target_has_atomic = "8")]
854    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
855    #[rustc_should_not_be_called_on_const_items]
856    pub fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool {
857        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
858            Ok(x) => x,
859            Err(x) => x,
860        }
861    }
862
863    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
864    ///
865    /// The return value is a result indicating whether the new value was written and containing
866    /// the previous value. On success this value is guaranteed to be equal to `current`.
867    ///
868    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
869    /// ordering of this operation. `success` describes the required ordering for the
870    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
871    /// `failure` describes the required ordering for the load operation that takes place when
872    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
873    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
874    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
875    ///
876    /// **Note:** This method is only available on platforms that support atomic
877    /// operations on `u8`.
878    ///
879    /// # Examples
880    ///
881    /// ```
882    /// use std::sync::atomic::{AtomicBool, Ordering};
883    ///
884    /// let some_bool = AtomicBool::new(true);
885    ///
886    /// assert_eq!(some_bool.compare_exchange(true,
887    ///                                       false,
888    ///                                       Ordering::Acquire,
889    ///                                       Ordering::Relaxed),
890    ///            Ok(true));
891    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
892    ///
893    /// assert_eq!(some_bool.compare_exchange(true, true,
894    ///                                       Ordering::SeqCst,
895    ///                                       Ordering::Acquire),
896    ///            Err(false));
897    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
898    /// ```
899    ///
900    /// # Considerations
901    ///
902    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
903    /// of CAS operations. In particular, a load of the value followed by a successful
904    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
905    /// changed the value in the interim. This is usually important when the *equality* check in
906    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
907    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
908    /// [ABA problem].
909    ///
910    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
911    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
912    #[inline]
913    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
914    #[doc(alias = "compare_and_swap")]
915    #[cfg(target_has_atomic = "8")]
916    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
917    #[rustc_should_not_be_called_on_const_items]
918    pub fn compare_exchange(
919        &self,
920        current: bool,
921        new: bool,
922        success: Ordering,
923        failure: Ordering,
924    ) -> Result<bool, bool> {
925        if EMULATE_ATOMIC_BOOL {
926            // Pick the strongest ordering from success and failure.
927            let order = match (success, failure) {
928                (SeqCst, _) => SeqCst,
929                (_, SeqCst) => SeqCst,
930                (AcqRel, _) => AcqRel,
931                (_, AcqRel) => {
932                    panic!("there is no such thing as an acquire-release failure ordering")
933                }
934                (Release, Acquire) => AcqRel,
935                (Acquire, _) => Acquire,
936                (_, Acquire) => Acquire,
937                (Release, Relaxed) => Release,
938                (_, Release) => panic!("there is no such thing as a release failure ordering"),
939                (Relaxed, Relaxed) => Relaxed,
940            };
941            let old = if current == new {
942                // This is a no-op, but we still need to perform the operation
943                // for memory ordering reasons.
944                self.fetch_or(false, order)
945            } else {
946                // This sets the value to the new one and returns the old one.
947                self.swap(new, order)
948            };
949            if old == current { Ok(old) } else { Err(old) }
950        } else {
951            // SAFETY: data races are prevented by atomic intrinsics.
952            match unsafe {
953                atomic_compare_exchange(self.v.get(), current as u8, new as u8, success, failure)
954            } {
955                Ok(x) => Ok(x != 0),
956                Err(x) => Err(x != 0),
957            }
958        }
959    }
960
961    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
962    ///
963    /// Unlike [`AtomicBool::compare_exchange`], this function is allowed to spuriously fail even when the
964    /// comparison succeeds, which can result in more efficient code on some platforms. The
965    /// return value is a result indicating whether the new value was written and containing the
966    /// previous value.
967    ///
968    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
969    /// ordering of this operation. `success` describes the required ordering for the
970    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
971    /// `failure` describes the required ordering for the load operation that takes place when
972    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
973    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
974    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
975    ///
976    /// **Note:** This method is only available on platforms that support atomic
977    /// operations on `u8`.
978    ///
979    /// # Examples
980    ///
981    /// ```
982    /// use std::sync::atomic::{AtomicBool, Ordering};
983    ///
984    /// let val = AtomicBool::new(false);
985    ///
986    /// let new = true;
987    /// let mut old = val.load(Ordering::Relaxed);
988    /// loop {
989    ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
990    ///         Ok(_) => break,
991    ///         Err(x) => old = x,
992    ///     }
993    /// }
994    /// ```
995    ///
996    /// # Considerations
997    ///
998    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
999    /// of CAS operations. In particular, a load of the value followed by a successful
1000    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1001    /// changed the value in the interim. This is usually important when the *equality* check in
1002    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1003    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
1004    /// [ABA problem].
1005    ///
1006    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1007    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1008    #[inline]
1009    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1010    #[doc(alias = "compare_and_swap")]
1011    #[cfg(target_has_atomic = "8")]
1012    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1013    #[rustc_should_not_be_called_on_const_items]
1014    pub fn compare_exchange_weak(
1015        &self,
1016        current: bool,
1017        new: bool,
1018        success: Ordering,
1019        failure: Ordering,
1020    ) -> Result<bool, bool> {
1021        if EMULATE_ATOMIC_BOOL {
1022            return self.compare_exchange(current, new, success, failure);
1023        }
1024
1025        // SAFETY: data races are prevented by atomic intrinsics.
1026        match unsafe {
1027            atomic_compare_exchange_weak(self.v.get(), current as u8, new as u8, success, failure)
1028        } {
1029            Ok(x) => Ok(x != 0),
1030            Err(x) => Err(x != 0),
1031        }
1032    }
1033
1034    /// Logical "and" with a boolean value.
1035    ///
1036    /// Performs a logical "and" operation on the current value and the argument `val`, and sets
1037    /// the new value to the result.
1038    ///
1039    /// Returns the previous value.
1040    ///
1041    /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
1042    /// of this operation. All ordering modes are possible. Note that using
1043    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1044    /// using [`Release`] makes the load part [`Relaxed`].
1045    ///
1046    /// **Note:** This method is only available on platforms that support atomic
1047    /// operations on `u8`.
1048    ///
1049    /// # Examples
1050    ///
1051    /// ```
1052    /// use std::sync::atomic::{AtomicBool, Ordering};
1053    ///
1054    /// let foo = AtomicBool::new(true);
1055    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
1056    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1057    ///
1058    /// let foo = AtomicBool::new(true);
1059    /// assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
1060    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1061    ///
1062    /// let foo = AtomicBool::new(false);
1063    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
1064    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1065    /// ```
1066    #[inline]
1067    #[stable(feature = "rust1", since = "1.0.0")]
1068    #[cfg(target_has_atomic = "8")]
1069    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1070    #[rustc_should_not_be_called_on_const_items]
1071    pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
1072        // SAFETY: data races are prevented by atomic intrinsics.
1073        unsafe { atomic_and(self.v.get(), val as u8, order) != 0 }
1074    }
1075
1076    /// Logical "nand" with a boolean value.
1077    ///
1078    /// Performs a logical "nand" operation on the current value and the argument `val`, and sets
1079    /// the new value to the result.
1080    ///
1081    /// Returns the previous value.
1082    ///
1083    /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
1084    /// of this operation. All ordering modes are possible. Note that using
1085    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1086    /// using [`Release`] makes the load part [`Relaxed`].
1087    ///
1088    /// **Note:** This method is only available on platforms that support atomic
1089    /// operations on `u8`.
1090    ///
1091    /// # Examples
1092    ///
1093    /// ```
1094    /// use std::sync::atomic::{AtomicBool, Ordering};
1095    ///
1096    /// let foo = AtomicBool::new(true);
1097    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
1098    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1099    ///
1100    /// let foo = AtomicBool::new(true);
1101    /// assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
1102    /// assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
1103    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1104    ///
1105    /// let foo = AtomicBool::new(false);
1106    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
1107    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1108    /// ```
1109    #[inline]
1110    #[stable(feature = "rust1", since = "1.0.0")]
1111    #[cfg(target_has_atomic = "8")]
1112    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1113    #[rustc_should_not_be_called_on_const_items]
1114    pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
1115        // We can't use atomic_nand here because it can result in a bool with
1116        // an invalid value. This happens because the atomic operation is done
1117        // with an 8-bit integer internally, which would set the upper 7 bits.
1118        // So we just use fetch_xor or swap instead.
1119        if val {
1120            // !(x & true) == !x
1121            // We must invert the bool.
1122            self.fetch_xor(true, order)
1123        } else {
1124            // !(x & false) == true
1125            // We must set the bool to true.
1126            self.swap(true, order)
1127        }
1128    }
1129
1130    /// Logical "or" with a boolean value.
1131    ///
1132    /// Performs a logical "or" operation on the current value and the argument `val`, and sets the
1133    /// new value to the result.
1134    ///
1135    /// Returns the previous value.
1136    ///
1137    /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
1138    /// of this operation. All ordering modes are possible. Note that using
1139    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1140    /// using [`Release`] makes the load part [`Relaxed`].
1141    ///
1142    /// **Note:** This method is only available on platforms that support atomic
1143    /// operations on `u8`.
1144    ///
1145    /// # Examples
1146    ///
1147    /// ```
1148    /// use std::sync::atomic::{AtomicBool, Ordering};
1149    ///
1150    /// let foo = AtomicBool::new(true);
1151    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
1152    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1153    ///
1154    /// let foo = AtomicBool::new(false);
1155    /// assert_eq!(foo.fetch_or(true, Ordering::SeqCst), false);
1156    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1157    ///
1158    /// let foo = AtomicBool::new(false);
1159    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
1160    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1161    /// ```
1162    #[inline]
1163    #[stable(feature = "rust1", since = "1.0.0")]
1164    #[cfg(target_has_atomic = "8")]
1165    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1166    #[rustc_should_not_be_called_on_const_items]
1167    pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
1168        // SAFETY: data races are prevented by atomic intrinsics.
1169        unsafe { atomic_or(self.v.get(), val as u8, order) != 0 }
1170    }
1171
1172    /// Logical "xor" with a boolean value.
1173    ///
1174    /// Performs a logical "xor" operation on the current value and the argument `val`, and sets
1175    /// the new value to the result.
1176    ///
1177    /// Returns the previous value.
1178    ///
1179    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
1180    /// of this operation. All ordering modes are possible. Note that using
1181    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1182    /// using [`Release`] makes the load part [`Relaxed`].
1183    ///
1184    /// **Note:** This method is only available on platforms that support atomic
1185    /// operations on `u8`.
1186    ///
1187    /// # Examples
1188    ///
1189    /// ```
1190    /// use std::sync::atomic::{AtomicBool, Ordering};
1191    ///
1192    /// let foo = AtomicBool::new(true);
1193    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
1194    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1195    ///
1196    /// let foo = AtomicBool::new(true);
1197    /// assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
1198    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1199    ///
1200    /// let foo = AtomicBool::new(false);
1201    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
1202    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1203    /// ```
1204    #[inline]
1205    #[stable(feature = "rust1", since = "1.0.0")]
1206    #[cfg(target_has_atomic = "8")]
1207    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1208    #[rustc_should_not_be_called_on_const_items]
1209    pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
1210        // SAFETY: data races are prevented by atomic intrinsics.
1211        unsafe { atomic_xor(self.v.get(), val as u8, order) != 0 }
1212    }
1213
1214    /// Logical "not" with a boolean value.
1215    ///
1216    /// Performs a logical "not" operation on the current value, and sets
1217    /// the new value to the result.
1218    ///
1219    /// Returns the previous value.
1220    ///
1221    /// `fetch_not` takes an [`Ordering`] argument which describes the memory ordering
1222    /// of this operation. All ordering modes are possible. Note that using
1223    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1224    /// using [`Release`] makes the load part [`Relaxed`].
1225    ///
1226    /// **Note:** This method is only available on platforms that support atomic
1227    /// operations on `u8`.
1228    ///
1229    /// # Examples
1230    ///
1231    /// ```
1232    /// use std::sync::atomic::{AtomicBool, Ordering};
1233    ///
1234    /// let foo = AtomicBool::new(true);
1235    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
1236    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1237    ///
1238    /// let foo = AtomicBool::new(false);
1239    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
1240    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1241    /// ```
1242    #[inline]
1243    #[stable(feature = "atomic_bool_fetch_not", since = "1.81.0")]
1244    #[cfg(target_has_atomic = "8")]
1245    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1246    #[rustc_should_not_be_called_on_const_items]
1247    pub fn fetch_not(&self, order: Ordering) -> bool {
1248        self.fetch_xor(true, order)
1249    }
1250
1251    /// Returns a mutable pointer to the underlying [`bool`].
1252    ///
1253    /// Doing non-atomic reads and writes on the resulting boolean can be a data race.
1254    /// This method is mostly useful for FFI, where the function signature may use
1255    /// `*mut bool` instead of `&AtomicBool`.
1256    ///
1257    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
1258    /// atomic types work with interior mutability. All modifications of an atomic change the value
1259    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
1260    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
1261    /// requirements of the [memory model].
1262    ///
1263    /// # Examples
1264    ///
1265    /// ```ignore (extern-declaration)
1266    /// # fn main() {
1267    /// use std::sync::atomic::AtomicBool;
1268    ///
1269    /// extern "C" {
1270    ///     fn my_atomic_op(arg: *mut bool);
1271    /// }
1272    ///
1273    /// let mut atomic = AtomicBool::new(true);
1274    /// unsafe {
1275    ///     my_atomic_op(atomic.as_ptr());
1276    /// }
1277    /// # }
1278    /// ```
1279    ///
1280    /// [memory model]: self#memory-model-for-atomic-accesses
1281    #[inline]
1282    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
1283    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
1284    #[rustc_never_returns_null_ptr]
1285    #[rustc_should_not_be_called_on_const_items]
1286    pub const fn as_ptr(&self) -> *mut bool {
1287        self.v.get().cast()
1288    }
1289
1290    /// Fetches the value, and applies a function to it that returns an optional
1291    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1292    /// returned `Some(_)`, else `Err(previous_value)`.
1293    ///
1294    /// Note: This may call the function multiple times if the value has been
1295    /// changed from other threads in the meantime, as long as the function
1296    /// returns `Some(_)`, but the function will have been applied only once to
1297    /// the stored value.
1298    ///
1299    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1300    /// ordering of this operation. The first describes the required ordering for
1301    /// when the operation finally succeeds while the second describes the
1302    /// required ordering for loads. These correspond to the success and failure
1303    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1304    ///
1305    /// Using [`Acquire`] as success ordering makes the store part of this
1306    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1307    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1308    /// [`Acquire`] or [`Relaxed`].
1309    ///
1310    /// **Note:** This method is only available on platforms that support atomic
1311    /// operations on `u8`.
1312    ///
1313    /// # Considerations
1314    ///
1315    /// This method is not magic; it is not provided by the hardware, and does not act like a
1316    /// critical section or mutex.
1317    ///
1318    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1319    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1320    ///
1321    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1322    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1323    ///
1324    /// # Examples
1325    ///
1326    /// ```rust
1327    /// use std::sync::atomic::{AtomicBool, Ordering};
1328    ///
1329    /// let x = AtomicBool::new(false);
1330    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1331    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1332    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1333    /// assert_eq!(x.load(Ordering::SeqCst), false);
1334    /// ```
1335    #[inline]
1336    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1337    #[cfg(target_has_atomic = "8")]
1338    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1339    #[rustc_should_not_be_called_on_const_items]
1340    pub fn fetch_update<F>(
1341        &self,
1342        set_order: Ordering,
1343        fetch_order: Ordering,
1344        mut f: F,
1345    ) -> Result<bool, bool>
1346    where
1347        F: FnMut(bool) -> Option<bool>,
1348    {
1349        let mut prev = self.load(fetch_order);
1350        while let Some(next) = f(prev) {
1351            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1352                x @ Ok(_) => return x,
1353                Err(next_prev) => prev = next_prev,
1354            }
1355        }
1356        Err(prev)
1357    }
1358
1359    /// Fetches the value, and applies a function to it that returns an optional
1360    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1361    /// returned `Some(_)`, else `Err(previous_value)`.
1362    ///
1363    /// See also: [`update`](`AtomicBool::update`).
1364    ///
1365    /// Note: This may call the function multiple times if the value has been
1366    /// changed from other threads in the meantime, as long as the function
1367    /// returns `Some(_)`, but the function will have been applied only once to
1368    /// the stored value.
1369    ///
1370    /// `try_update` takes two [`Ordering`] arguments to describe the memory
1371    /// ordering of this operation. The first describes the required ordering for
1372    /// when the operation finally succeeds while the second describes the
1373    /// required ordering for loads. These correspond to the success and failure
1374    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1375    ///
1376    /// Using [`Acquire`] as success ordering makes the store part of this
1377    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1378    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1379    /// [`Acquire`] or [`Relaxed`].
1380    ///
1381    /// **Note:** This method is only available on platforms that support atomic
1382    /// operations on `u8`.
1383    ///
1384    /// # Considerations
1385    ///
1386    /// This method is not magic; it is not provided by the hardware, and does not act like a
1387    /// critical section or mutex.
1388    ///
1389    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1390    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1391    ///
1392    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1393    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1394    ///
1395    /// # Examples
1396    ///
1397    /// ```rust
1398    /// #![feature(atomic_try_update)]
1399    /// use std::sync::atomic::{AtomicBool, Ordering};
1400    ///
1401    /// let x = AtomicBool::new(false);
1402    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1403    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1404    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1405    /// assert_eq!(x.load(Ordering::SeqCst), false);
1406    /// ```
1407    #[inline]
1408    #[unstable(feature = "atomic_try_update", issue = "135894")]
1409    #[cfg(target_has_atomic = "8")]
1410    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1411    #[rustc_should_not_be_called_on_const_items]
1412    pub fn try_update(
1413        &self,
1414        set_order: Ordering,
1415        fetch_order: Ordering,
1416        f: impl FnMut(bool) -> Option<bool>,
1417    ) -> Result<bool, bool> {
1418        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1419        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1420        self.fetch_update(set_order, fetch_order, f)
1421    }
1422
1423    /// Fetches the value, applies a function to it that it return a new value.
1424    /// The new value is stored and the old value is returned.
1425    ///
1426    /// See also: [`try_update`](`AtomicBool::try_update`).
1427    ///
1428    /// Note: This may call the function multiple times if the value has been changed from other threads in
1429    /// the meantime, but the function will have been applied only once to the stored value.
1430    ///
1431    /// `update` takes two [`Ordering`] arguments to describe the memory
1432    /// ordering of this operation. The first describes the required ordering for
1433    /// when the operation finally succeeds while the second describes the
1434    /// required ordering for loads. These correspond to the success and failure
1435    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1436    ///
1437    /// Using [`Acquire`] as success ordering makes the store part
1438    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1439    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1440    ///
1441    /// **Note:** This method is only available on platforms that support atomic operations on `u8`.
1442    ///
1443    /// # Considerations
1444    ///
1445    /// This method is not magic; it is not provided by the hardware, and does not act like a
1446    /// critical section or mutex.
1447    ///
1448    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1449    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1450    ///
1451    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1452    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1453    ///
1454    /// # Examples
1455    ///
1456    /// ```rust
1457    /// #![feature(atomic_try_update)]
1458    ///
1459    /// use std::sync::atomic::{AtomicBool, Ordering};
1460    ///
1461    /// let x = AtomicBool::new(false);
1462    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
1463    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
1464    /// assert_eq!(x.load(Ordering::SeqCst), false);
1465    /// ```
1466    #[inline]
1467    #[unstable(feature = "atomic_try_update", issue = "135894")]
1468    #[cfg(target_has_atomic = "8")]
1469    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1470    #[rustc_should_not_be_called_on_const_items]
1471    pub fn update(
1472        &self,
1473        set_order: Ordering,
1474        fetch_order: Ordering,
1475        mut f: impl FnMut(bool) -> bool,
1476    ) -> bool {
1477        let mut prev = self.load(fetch_order);
1478        loop {
1479            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1480                Ok(x) => break x,
1481                Err(next_prev) => prev = next_prev,
1482            }
1483        }
1484    }
1485}
1486
1487#[cfg(target_has_atomic_load_store = "ptr")]
1488impl<T> AtomicPtr<T> {
1489    /// Creates a new `AtomicPtr`.
1490    ///
1491    /// # Examples
1492    ///
1493    /// ```
1494    /// use std::sync::atomic::AtomicPtr;
1495    ///
1496    /// let ptr = &mut 5;
1497    /// let atomic_ptr = AtomicPtr::new(ptr);
1498    /// ```
1499    #[inline]
1500    #[stable(feature = "rust1", since = "1.0.0")]
1501    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
1502    pub const fn new(p: *mut T) -> AtomicPtr<T> {
1503        AtomicPtr { p: UnsafeCell::new(p) }
1504    }
1505
1506    /// Creates a new `AtomicPtr` from a pointer.
1507    ///
1508    /// # Examples
1509    ///
1510    /// ```
1511    /// use std::sync::atomic::{self, AtomicPtr};
1512    ///
1513    /// // Get a pointer to an allocated value
1514    /// let ptr: *mut *mut u8 = Box::into_raw(Box::new(std::ptr::null_mut()));
1515    ///
1516    /// assert!(ptr.cast::<AtomicPtr<u8>>().is_aligned());
1517    ///
1518    /// {
1519    ///     // Create an atomic view of the allocated value
1520    ///     let atomic = unsafe { AtomicPtr::from_ptr(ptr) };
1521    ///
1522    ///     // Use `atomic` for atomic operations, possibly share it with other threads
1523    ///     atomic.store(std::ptr::NonNull::dangling().as_ptr(), atomic::Ordering::Relaxed);
1524    /// }
1525    ///
1526    /// // It's ok to non-atomically access the value behind `ptr`,
1527    /// // since the reference to the atomic ended its lifetime in the block above
1528    /// assert!(!unsafe { *ptr }.is_null());
1529    ///
1530    /// // Deallocate the value
1531    /// unsafe { drop(Box::from_raw(ptr)) }
1532    /// ```
1533    ///
1534    /// # Safety
1535    ///
1536    /// * `ptr` must be aligned to `align_of::<AtomicPtr<T>>()` (note that on some platforms this
1537    ///   can be bigger than `align_of::<*mut T>()`).
1538    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
1539    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
1540    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
1541    ///   sizes, without synchronization.
1542    ///
1543    /// [valid]: crate::ptr#safety
1544    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
1545    #[inline]
1546    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
1547    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
1548    pub const unsafe fn from_ptr<'a>(ptr: *mut *mut T) -> &'a AtomicPtr<T> {
1549        // SAFETY: guaranteed by the caller
1550        unsafe { &*ptr.cast() }
1551    }
1552
1553    /// Creates a new `AtomicPtr` initialized with a null pointer.
1554    ///
1555    /// # Examples
1556    ///
1557    /// ```
1558    /// #![feature(atomic_ptr_null)]
1559    /// use std::sync::atomic::{AtomicPtr, Ordering};
1560    ///
1561    /// let atomic_ptr = AtomicPtr::<()>::null();
1562    /// assert!(atomic_ptr.load(Ordering::Relaxed).is_null());
1563    /// ```
1564    #[inline]
1565    #[must_use]
1566    #[unstable(feature = "atomic_ptr_null", issue = "150733")]
1567    pub const fn null() -> AtomicPtr<T> {
1568        AtomicPtr::new(crate::ptr::null_mut())
1569    }
1570
1571    /// Returns a mutable reference to the underlying pointer.
1572    ///
1573    /// This is safe because the mutable reference guarantees that no other threads are
1574    /// concurrently accessing the atomic data.
1575    ///
1576    /// # Examples
1577    ///
1578    /// ```
1579    /// use std::sync::atomic::{AtomicPtr, Ordering};
1580    ///
1581    /// let mut data = 10;
1582    /// let mut atomic_ptr = AtomicPtr::new(&mut data);
1583    /// let mut other_data = 5;
1584    /// *atomic_ptr.get_mut() = &mut other_data;
1585    /// assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);
1586    /// ```
1587    #[inline]
1588    #[stable(feature = "atomic_access", since = "1.15.0")]
1589    pub fn get_mut(&mut self) -> &mut *mut T {
1590        self.p.get_mut()
1591    }
1592
1593    /// Gets atomic access to a pointer.
1594    ///
1595    /// **Note:** This function is only available on targets where `AtomicPtr<T>` has the same alignment as `*const T`
1596    ///
1597    /// # Examples
1598    ///
1599    /// ```
1600    /// #![feature(atomic_from_mut)]
1601    /// use std::sync::atomic::{AtomicPtr, Ordering};
1602    ///
1603    /// let mut data = 123;
1604    /// let mut some_ptr = &mut data as *mut i32;
1605    /// let a = AtomicPtr::from_mut(&mut some_ptr);
1606    /// let mut other_data = 456;
1607    /// a.store(&mut other_data, Ordering::Relaxed);
1608    /// assert_eq!(unsafe { *some_ptr }, 456);
1609    /// ```
1610    #[inline]
1611    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1612    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1613    pub fn from_mut(v: &mut *mut T) -> &mut Self {
1614        let [] = [(); align_of::<AtomicPtr<()>>() - align_of::<*mut ()>()];
1615        // SAFETY:
1616        //  - the mutable reference guarantees unique ownership.
1617        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1618        //    supported by rust, as verified above.
1619        unsafe { &mut *(v as *mut *mut T as *mut Self) }
1620    }
1621
1622    /// Gets non-atomic access to a `&mut [AtomicPtr]` slice.
1623    ///
1624    /// This is safe because the mutable reference guarantees that no other threads are
1625    /// concurrently accessing the atomic data.
1626    ///
1627    /// # Examples
1628    ///
1629    /// ```ignore-wasm
1630    /// #![feature(atomic_from_mut)]
1631    /// use std::ptr::null_mut;
1632    /// use std::sync::atomic::{AtomicPtr, Ordering};
1633    ///
1634    /// let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
1635    ///
1636    /// let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
1637    /// assert_eq!(view, [null_mut::<String>(); 10]);
1638    /// view
1639    ///     .iter_mut()
1640    ///     .enumerate()
1641    ///     .for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
1642    ///
1643    /// std::thread::scope(|s| {
1644    ///     for ptr in &some_ptrs {
1645    ///         s.spawn(move || {
1646    ///             let ptr = ptr.load(Ordering::Relaxed);
1647    ///             assert!(!ptr.is_null());
1648    ///
1649    ///             let name = unsafe { Box::from_raw(ptr) };
1650    ///             println!("Hello, {name}!");
1651    ///         });
1652    ///     }
1653    /// });
1654    /// ```
1655    #[inline]
1656    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1657    pub fn get_mut_slice(this: &mut [Self]) -> &mut [*mut T] {
1658        // SAFETY: the mutable reference guarantees unique ownership.
1659        unsafe { &mut *(this as *mut [Self] as *mut [*mut T]) }
1660    }
1661
1662    /// Gets atomic access to a slice of pointers.
1663    ///
1664    /// **Note:** This function is only available on targets where `AtomicPtr<T>` has the same alignment as `*const T`
1665    ///
1666    /// # Examples
1667    ///
1668    /// ```ignore-wasm
1669    /// #![feature(atomic_from_mut)]
1670    /// use std::ptr::null_mut;
1671    /// use std::sync::atomic::{AtomicPtr, Ordering};
1672    ///
1673    /// let mut some_ptrs = [null_mut::<String>(); 10];
1674    /// let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
1675    /// std::thread::scope(|s| {
1676    ///     for i in 0..a.len() {
1677    ///         s.spawn(move || {
1678    ///             let name = Box::new(format!("thread{i}"));
1679    ///             a[i].store(Box::into_raw(name), Ordering::Relaxed);
1680    ///         });
1681    ///     }
1682    /// });
1683    /// for p in some_ptrs {
1684    ///     assert!(!p.is_null());
1685    ///     let name = unsafe { Box::from_raw(p) };
1686    ///     println!("Hello, {name}!");
1687    /// }
1688    /// ```
1689    #[inline]
1690    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1691    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1692    pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [Self] {
1693        // SAFETY:
1694        //  - the mutable reference guarantees unique ownership.
1695        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1696        //    supported by rust, as verified above.
1697        unsafe { &mut *(v as *mut [*mut T] as *mut [Self]) }
1698    }
1699
1700    /// Consumes the atomic and returns the contained value.
1701    ///
1702    /// This is safe because passing `self` by value guarantees that no other threads are
1703    /// concurrently accessing the atomic data.
1704    ///
1705    /// # Examples
1706    ///
1707    /// ```
1708    /// use std::sync::atomic::AtomicPtr;
1709    ///
1710    /// let mut data = 5;
1711    /// let atomic_ptr = AtomicPtr::new(&mut data);
1712    /// assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);
1713    /// ```
1714    #[inline]
1715    #[stable(feature = "atomic_access", since = "1.15.0")]
1716    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
1717    pub const fn into_inner(self) -> *mut T {
1718        self.p.into_inner()
1719    }
1720
1721    /// Loads a value from the pointer.
1722    ///
1723    /// `load` takes an [`Ordering`] argument which describes the memory ordering
1724    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
1725    ///
1726    /// # Panics
1727    ///
1728    /// Panics if `order` is [`Release`] or [`AcqRel`].
1729    ///
1730    /// # Examples
1731    ///
1732    /// ```
1733    /// use std::sync::atomic::{AtomicPtr, Ordering};
1734    ///
1735    /// let ptr = &mut 5;
1736    /// let some_ptr = AtomicPtr::new(ptr);
1737    ///
1738    /// let value = some_ptr.load(Ordering::Relaxed);
1739    /// ```
1740    #[inline]
1741    #[stable(feature = "rust1", since = "1.0.0")]
1742    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1743    pub fn load(&self, order: Ordering) -> *mut T {
1744        // SAFETY: data races are prevented by atomic intrinsics.
1745        unsafe { atomic_load(self.p.get(), order) }
1746    }
1747
1748    /// Stores a value into the pointer.
1749    ///
1750    /// `store` takes an [`Ordering`] argument which describes the memory ordering
1751    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
1752    ///
1753    /// # Panics
1754    ///
1755    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
1756    ///
1757    /// # Examples
1758    ///
1759    /// ```
1760    /// use std::sync::atomic::{AtomicPtr, Ordering};
1761    ///
1762    /// let ptr = &mut 5;
1763    /// let some_ptr = AtomicPtr::new(ptr);
1764    ///
1765    /// let other_ptr = &mut 10;
1766    ///
1767    /// some_ptr.store(other_ptr, Ordering::Relaxed);
1768    /// ```
1769    #[inline]
1770    #[stable(feature = "rust1", since = "1.0.0")]
1771    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1772    #[rustc_should_not_be_called_on_const_items]
1773    pub fn store(&self, ptr: *mut T, order: Ordering) {
1774        // SAFETY: data races are prevented by atomic intrinsics.
1775        unsafe {
1776            atomic_store(self.p.get(), ptr, order);
1777        }
1778    }
1779
1780    /// Stores a value into the pointer, returning the previous value.
1781    ///
1782    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
1783    /// of this operation. All ordering modes are possible. Note that using
1784    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1785    /// using [`Release`] makes the load part [`Relaxed`].
1786    ///
1787    /// **Note:** This method is only available on platforms that support atomic
1788    /// operations on pointers.
1789    ///
1790    /// # Examples
1791    ///
1792    /// ```
1793    /// use std::sync::atomic::{AtomicPtr, Ordering};
1794    ///
1795    /// let ptr = &mut 5;
1796    /// let some_ptr = AtomicPtr::new(ptr);
1797    ///
1798    /// let other_ptr = &mut 10;
1799    ///
1800    /// let value = some_ptr.swap(other_ptr, Ordering::Relaxed);
1801    /// ```
1802    #[inline]
1803    #[stable(feature = "rust1", since = "1.0.0")]
1804    #[cfg(target_has_atomic = "ptr")]
1805    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1806    #[rustc_should_not_be_called_on_const_items]
1807    pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
1808        // SAFETY: data races are prevented by atomic intrinsics.
1809        unsafe { atomic_swap(self.p.get(), ptr, order) }
1810    }
1811
1812    /// Stores a value into the pointer if the current value is the same as the `current` value.
1813    ///
1814    /// The return value is always the previous value. If it is equal to `current`, then the value
1815    /// was updated.
1816    ///
1817    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
1818    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
1819    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
1820    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
1821    /// happens, and using [`Release`] makes the load part [`Relaxed`].
1822    ///
1823    /// **Note:** This method is only available on platforms that support atomic
1824    /// operations on pointers.
1825    ///
1826    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
1827    ///
1828    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
1829    /// memory orderings:
1830    ///
1831    /// Original | Success | Failure
1832    /// -------- | ------- | -------
1833    /// Relaxed  | Relaxed | Relaxed
1834    /// Acquire  | Acquire | Acquire
1835    /// Release  | Release | Relaxed
1836    /// AcqRel   | AcqRel  | Acquire
1837    /// SeqCst   | SeqCst  | SeqCst
1838    ///
1839    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
1840    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
1841    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
1842    /// rather than to infer success vs failure based on the value that was read.
1843    ///
1844    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
1845    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
1846    /// which allows the compiler to generate better assembly code when the compare and swap
1847    /// is used in a loop.
1848    ///
1849    /// # Examples
1850    ///
1851    /// ```
1852    /// use std::sync::atomic::{AtomicPtr, Ordering};
1853    ///
1854    /// let ptr = &mut 5;
1855    /// let some_ptr = AtomicPtr::new(ptr);
1856    ///
1857    /// let other_ptr = &mut 10;
1858    ///
1859    /// let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);
1860    /// ```
1861    #[inline]
1862    #[stable(feature = "rust1", since = "1.0.0")]
1863    #[deprecated(
1864        since = "1.50.0",
1865        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
1866    )]
1867    #[cfg(target_has_atomic = "ptr")]
1868    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1869    #[rustc_should_not_be_called_on_const_items]
1870    pub fn compare_and_swap(&self, current: *mut T, new: *mut T, order: Ordering) -> *mut T {
1871        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
1872            Ok(x) => x,
1873            Err(x) => x,
1874        }
1875    }
1876
1877    /// Stores a value into the pointer if the current value is the same as the `current` value.
1878    ///
1879    /// The return value is a result indicating whether the new value was written and containing
1880    /// the previous value. On success this value is guaranteed to be equal to `current`.
1881    ///
1882    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
1883    /// ordering of this operation. `success` describes the required ordering for the
1884    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1885    /// `failure` describes the required ordering for the load operation that takes place when
1886    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1887    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1888    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1889    ///
1890    /// **Note:** This method is only available on platforms that support atomic
1891    /// operations on pointers.
1892    ///
1893    /// # Examples
1894    ///
1895    /// ```
1896    /// use std::sync::atomic::{AtomicPtr, Ordering};
1897    ///
1898    /// let ptr = &mut 5;
1899    /// let some_ptr = AtomicPtr::new(ptr);
1900    ///
1901    /// let other_ptr = &mut 10;
1902    ///
1903    /// let value = some_ptr.compare_exchange(ptr, other_ptr,
1904    ///                                       Ordering::SeqCst, Ordering::Relaxed);
1905    /// ```
1906    ///
1907    /// # Considerations
1908    ///
1909    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1910    /// of CAS operations. In particular, a load of the value followed by a successful
1911    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1912    /// changed the value in the interim. This is usually important when the *equality* check in
1913    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1914    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1915    /// a pointer holding the same address does not imply that the same object exists at that
1916    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1917    ///
1918    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1919    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1920    #[inline]
1921    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1922    #[cfg(target_has_atomic = "ptr")]
1923    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1924    #[rustc_should_not_be_called_on_const_items]
1925    pub fn compare_exchange(
1926        &self,
1927        current: *mut T,
1928        new: *mut T,
1929        success: Ordering,
1930        failure: Ordering,
1931    ) -> Result<*mut T, *mut T> {
1932        // SAFETY: data races are prevented by atomic intrinsics.
1933        unsafe { atomic_compare_exchange(self.p.get(), current, new, success, failure) }
1934    }
1935
1936    /// Stores a value into the pointer if the current value is the same as the `current` value.
1937    ///
1938    /// Unlike [`AtomicPtr::compare_exchange`], this function is allowed to spuriously fail even when the
1939    /// comparison succeeds, which can result in more efficient code on some platforms. The
1940    /// return value is a result indicating whether the new value was written and containing the
1941    /// previous value.
1942    ///
1943    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1944    /// ordering of this operation. `success` describes the required ordering for the
1945    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1946    /// `failure` describes the required ordering for the load operation that takes place when
1947    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1948    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1949    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1950    ///
1951    /// **Note:** This method is only available on platforms that support atomic
1952    /// operations on pointers.
1953    ///
1954    /// # Examples
1955    ///
1956    /// ```
1957    /// use std::sync::atomic::{AtomicPtr, Ordering};
1958    ///
1959    /// let some_ptr = AtomicPtr::new(&mut 5);
1960    ///
1961    /// let new = &mut 10;
1962    /// let mut old = some_ptr.load(Ordering::Relaxed);
1963    /// loop {
1964    ///     match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1965    ///         Ok(_) => break,
1966    ///         Err(x) => old = x,
1967    ///     }
1968    /// }
1969    /// ```
1970    ///
1971    /// # Considerations
1972    ///
1973    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1974    /// of CAS operations. In particular, a load of the value followed by a successful
1975    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1976    /// changed the value in the interim. This is usually important when the *equality* check in
1977    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1978    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1979    /// a pointer holding the same address does not imply that the same object exists at that
1980    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1981    ///
1982    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1983    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1984    #[inline]
1985    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1986    #[cfg(target_has_atomic = "ptr")]
1987    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1988    #[rustc_should_not_be_called_on_const_items]
1989    pub fn compare_exchange_weak(
1990        &self,
1991        current: *mut T,
1992        new: *mut T,
1993        success: Ordering,
1994        failure: Ordering,
1995    ) -> Result<*mut T, *mut T> {
1996        // SAFETY: This intrinsic is unsafe because it operates on a raw pointer
1997        // but we know for sure that the pointer is valid (we just got it from
1998        // an `UnsafeCell` that we have by reference) and the atomic operation
1999        // itself allows us to safely mutate the `UnsafeCell` contents.
2000        unsafe { atomic_compare_exchange_weak(self.p.get(), current, new, success, failure) }
2001    }
2002
2003    /// Fetches the value, and applies a function to it that returns an optional
2004    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
2005    /// returned `Some(_)`, else `Err(previous_value)`.
2006    ///
2007    /// Note: This may call the function multiple times if the value has been
2008    /// changed from other threads in the meantime, as long as the function
2009    /// returns `Some(_)`, but the function will have been applied only once to
2010    /// the stored value.
2011    ///
2012    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
2013    /// ordering of this operation. The first describes the required ordering for
2014    /// when the operation finally succeeds while the second describes the
2015    /// required ordering for loads. These correspond to the success and failure
2016    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2017    ///
2018    /// Using [`Acquire`] as success ordering makes the store part of this
2019    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2020    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2021    /// [`Acquire`] or [`Relaxed`].
2022    ///
2023    /// **Note:** This method is only available on platforms that support atomic
2024    /// operations on pointers.
2025    ///
2026    /// # Considerations
2027    ///
2028    /// This method is not magic; it is not provided by the hardware, and does not act like a
2029    /// critical section or mutex.
2030    ///
2031    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2032    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2033    /// which is a particularly common pitfall for pointers!
2034    ///
2035    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2036    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2037    ///
2038    /// # Examples
2039    ///
2040    /// ```rust
2041    /// use std::sync::atomic::{AtomicPtr, Ordering};
2042    ///
2043    /// let ptr: *mut _ = &mut 5;
2044    /// let some_ptr = AtomicPtr::new(ptr);
2045    ///
2046    /// let new: *mut _ = &mut 10;
2047    /// assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2048    /// let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2049    ///     if x == ptr {
2050    ///         Some(new)
2051    ///     } else {
2052    ///         None
2053    ///     }
2054    /// });
2055    /// assert_eq!(result, Ok(ptr));
2056    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2057    /// ```
2058    #[inline]
2059    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
2060    #[cfg(target_has_atomic = "ptr")]
2061    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2062    #[rustc_should_not_be_called_on_const_items]
2063    pub fn fetch_update<F>(
2064        &self,
2065        set_order: Ordering,
2066        fetch_order: Ordering,
2067        mut f: F,
2068    ) -> Result<*mut T, *mut T>
2069    where
2070        F: FnMut(*mut T) -> Option<*mut T>,
2071    {
2072        let mut prev = self.load(fetch_order);
2073        while let Some(next) = f(prev) {
2074            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
2075                x @ Ok(_) => return x,
2076                Err(next_prev) => prev = next_prev,
2077            }
2078        }
2079        Err(prev)
2080    }
2081    /// Fetches the value, and applies a function to it that returns an optional
2082    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
2083    /// returned `Some(_)`, else `Err(previous_value)`.
2084    ///
2085    /// See also: [`update`](`AtomicPtr::update`).
2086    ///
2087    /// Note: This may call the function multiple times if the value has been
2088    /// changed from other threads in the meantime, as long as the function
2089    /// returns `Some(_)`, but the function will have been applied only once to
2090    /// the stored value.
2091    ///
2092    /// `try_update` takes two [`Ordering`] arguments to describe the memory
2093    /// ordering of this operation. The first describes the required ordering for
2094    /// when the operation finally succeeds while the second describes the
2095    /// required ordering for loads. These correspond to the success and failure
2096    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2097    ///
2098    /// Using [`Acquire`] as success ordering makes the store part of this
2099    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2100    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2101    /// [`Acquire`] or [`Relaxed`].
2102    ///
2103    /// **Note:** This method is only available on platforms that support atomic
2104    /// operations on pointers.
2105    ///
2106    /// # Considerations
2107    ///
2108    /// This method is not magic; it is not provided by the hardware, and does not act like a
2109    /// critical section or mutex.
2110    ///
2111    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2112    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2113    /// which is a particularly common pitfall for pointers!
2114    ///
2115    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2116    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2117    ///
2118    /// # Examples
2119    ///
2120    /// ```rust
2121    /// #![feature(atomic_try_update)]
2122    /// use std::sync::atomic::{AtomicPtr, Ordering};
2123    ///
2124    /// let ptr: *mut _ = &mut 5;
2125    /// let some_ptr = AtomicPtr::new(ptr);
2126    ///
2127    /// let new: *mut _ = &mut 10;
2128    /// assert_eq!(some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2129    /// let result = some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2130    ///     if x == ptr {
2131    ///         Some(new)
2132    ///     } else {
2133    ///         None
2134    ///     }
2135    /// });
2136    /// assert_eq!(result, Ok(ptr));
2137    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2138    /// ```
2139    #[inline]
2140    #[unstable(feature = "atomic_try_update", issue = "135894")]
2141    #[cfg(target_has_atomic = "ptr")]
2142    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2143    #[rustc_should_not_be_called_on_const_items]
2144    pub fn try_update(
2145        &self,
2146        set_order: Ordering,
2147        fetch_order: Ordering,
2148        f: impl FnMut(*mut T) -> Option<*mut T>,
2149    ) -> Result<*mut T, *mut T> {
2150        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
2151        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
2152        self.fetch_update(set_order, fetch_order, f)
2153    }
2154
2155    /// Fetches the value, applies a function to it that it return a new value.
2156    /// The new value is stored and the old value is returned.
2157    ///
2158    /// See also: [`try_update`](`AtomicPtr::try_update`).
2159    ///
2160    /// Note: This may call the function multiple times if the value has been changed from other threads in
2161    /// the meantime, but the function will have been applied only once to the stored value.
2162    ///
2163    /// `update` takes two [`Ordering`] arguments to describe the memory
2164    /// ordering of this operation. The first describes the required ordering for
2165    /// when the operation finally succeeds while the second describes the
2166    /// required ordering for loads. These correspond to the success and failure
2167    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2168    ///
2169    /// Using [`Acquire`] as success ordering makes the store part
2170    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
2171    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2172    ///
2173    /// **Note:** This method is only available on platforms that support atomic
2174    /// operations on pointers.
2175    ///
2176    /// # Considerations
2177    ///
2178    /// This method is not magic; it is not provided by the hardware, and does not act like a
2179    /// critical section or mutex.
2180    ///
2181    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2182    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2183    /// which is a particularly common pitfall for pointers!
2184    ///
2185    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2186    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2187    ///
2188    /// # Examples
2189    ///
2190    /// ```rust
2191    /// #![feature(atomic_try_update)]
2192    ///
2193    /// use std::sync::atomic::{AtomicPtr, Ordering};
2194    ///
2195    /// let ptr: *mut _ = &mut 5;
2196    /// let some_ptr = AtomicPtr::new(ptr);
2197    ///
2198    /// let new: *mut _ = &mut 10;
2199    /// let result = some_ptr.update(Ordering::SeqCst, Ordering::SeqCst, |_| new);
2200    /// assert_eq!(result, ptr);
2201    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2202    /// ```
2203    #[inline]
2204    #[unstable(feature = "atomic_try_update", issue = "135894")]
2205    #[cfg(target_has_atomic = "8")]
2206    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2207    #[rustc_should_not_be_called_on_const_items]
2208    pub fn update(
2209        &self,
2210        set_order: Ordering,
2211        fetch_order: Ordering,
2212        mut f: impl FnMut(*mut T) -> *mut T,
2213    ) -> *mut T {
2214        let mut prev = self.load(fetch_order);
2215        loop {
2216            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
2217                Ok(x) => break x,
2218                Err(next_prev) => prev = next_prev,
2219            }
2220        }
2221    }
2222
2223    /// Offsets the pointer's address by adding `val` (in units of `T`),
2224    /// returning the previous pointer.
2225    ///
2226    /// This is equivalent to using [`wrapping_add`] to atomically perform the
2227    /// equivalent of `ptr = ptr.wrapping_add(val);`.
2228    ///
2229    /// This method operates in units of `T`, which means that it cannot be used
2230    /// to offset the pointer by an amount which is not a multiple of
2231    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2232    /// work with a deliberately misaligned pointer. In such cases, you may use
2233    /// the [`fetch_byte_add`](Self::fetch_byte_add) method instead.
2234    ///
2235    /// `fetch_ptr_add` takes an [`Ordering`] argument which describes the
2236    /// memory ordering of this operation. All ordering modes are possible. Note
2237    /// that using [`Acquire`] makes the store part of this operation
2238    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2239    ///
2240    /// **Note**: This method is only available on platforms that support atomic
2241    /// operations on [`AtomicPtr`].
2242    ///
2243    /// [`wrapping_add`]: pointer::wrapping_add
2244    ///
2245    /// # Examples
2246    ///
2247    /// ```
2248    /// use core::sync::atomic::{AtomicPtr, Ordering};
2249    ///
2250    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2251    /// assert_eq!(atom.fetch_ptr_add(1, Ordering::Relaxed).addr(), 0);
2252    /// // Note: units of `size_of::<i64>()`.
2253    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 8);
2254    /// ```
2255    #[inline]
2256    #[cfg(target_has_atomic = "ptr")]
2257    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2258    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2259    #[rustc_should_not_be_called_on_const_items]
2260    pub fn fetch_ptr_add(&self, val: usize, order: Ordering) -> *mut T {
2261        self.fetch_byte_add(val.wrapping_mul(size_of::<T>()), order)
2262    }
2263
2264    /// Offsets the pointer's address by subtracting `val` (in units of `T`),
2265    /// returning the previous pointer.
2266    ///
2267    /// This is equivalent to using [`wrapping_sub`] to atomically perform the
2268    /// equivalent of `ptr = ptr.wrapping_sub(val);`.
2269    ///
2270    /// This method operates in units of `T`, which means that it cannot be used
2271    /// to offset the pointer by an amount which is not a multiple of
2272    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2273    /// work with a deliberately misaligned pointer. In such cases, you may use
2274    /// the [`fetch_byte_sub`](Self::fetch_byte_sub) method instead.
2275    ///
2276    /// `fetch_ptr_sub` takes an [`Ordering`] argument which describes the memory
2277    /// ordering of this operation. All ordering modes are possible. Note that
2278    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2279    /// and using [`Release`] makes the load part [`Relaxed`].
2280    ///
2281    /// **Note**: This method is only available on platforms that support atomic
2282    /// operations on [`AtomicPtr`].
2283    ///
2284    /// [`wrapping_sub`]: pointer::wrapping_sub
2285    ///
2286    /// # Examples
2287    ///
2288    /// ```
2289    /// use core::sync::atomic::{AtomicPtr, Ordering};
2290    ///
2291    /// let array = [1i32, 2i32];
2292    /// let atom = AtomicPtr::new(array.as_ptr().wrapping_add(1) as *mut _);
2293    ///
2294    /// assert!(core::ptr::eq(
2295    ///     atom.fetch_ptr_sub(1, Ordering::Relaxed),
2296    ///     &array[1],
2297    /// ));
2298    /// assert!(core::ptr::eq(atom.load(Ordering::Relaxed), &array[0]));
2299    /// ```
2300    #[inline]
2301    #[cfg(target_has_atomic = "ptr")]
2302    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2303    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2304    #[rustc_should_not_be_called_on_const_items]
2305    pub fn fetch_ptr_sub(&self, val: usize, order: Ordering) -> *mut T {
2306        self.fetch_byte_sub(val.wrapping_mul(size_of::<T>()), order)
2307    }
2308
2309    /// Offsets the pointer's address by adding `val` *bytes*, returning the
2310    /// previous pointer.
2311    ///
2312    /// This is equivalent to using [`wrapping_byte_add`] to atomically
2313    /// perform `ptr = ptr.wrapping_byte_add(val)`.
2314    ///
2315    /// `fetch_byte_add` takes an [`Ordering`] argument which describes the
2316    /// memory ordering of this operation. All ordering modes are possible. Note
2317    /// that using [`Acquire`] makes the store part of this operation
2318    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2319    ///
2320    /// **Note**: This method is only available on platforms that support atomic
2321    /// operations on [`AtomicPtr`].
2322    ///
2323    /// [`wrapping_byte_add`]: pointer::wrapping_byte_add
2324    ///
2325    /// # Examples
2326    ///
2327    /// ```
2328    /// use core::sync::atomic::{AtomicPtr, Ordering};
2329    ///
2330    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2331    /// assert_eq!(atom.fetch_byte_add(1, Ordering::Relaxed).addr(), 0);
2332    /// // Note: in units of bytes, not `size_of::<i64>()`.
2333    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 1);
2334    /// ```
2335    #[inline]
2336    #[cfg(target_has_atomic = "ptr")]
2337    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2338    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2339    #[rustc_should_not_be_called_on_const_items]
2340    pub fn fetch_byte_add(&self, val: usize, order: Ordering) -> *mut T {
2341        // SAFETY: data races are prevented by atomic intrinsics.
2342        unsafe { atomic_add(self.p.get(), val, order).cast() }
2343    }
2344
2345    /// Offsets the pointer's address by subtracting `val` *bytes*, returning the
2346    /// previous pointer.
2347    ///
2348    /// This is equivalent to using [`wrapping_byte_sub`] to atomically
2349    /// perform `ptr = ptr.wrapping_byte_sub(val)`.
2350    ///
2351    /// `fetch_byte_sub` takes an [`Ordering`] argument which describes the
2352    /// memory ordering of this operation. All ordering modes are possible. Note
2353    /// that using [`Acquire`] makes the store part of this operation
2354    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2355    ///
2356    /// **Note**: This method is only available on platforms that support atomic
2357    /// operations on [`AtomicPtr`].
2358    ///
2359    /// [`wrapping_byte_sub`]: pointer::wrapping_byte_sub
2360    ///
2361    /// # Examples
2362    ///
2363    /// ```
2364    /// use core::sync::atomic::{AtomicPtr, Ordering};
2365    ///
2366    /// let mut arr = [0i64, 1];
2367    /// let atom = AtomicPtr::<i64>::new(&raw mut arr[1]);
2368    /// assert_eq!(atom.fetch_byte_sub(8, Ordering::Relaxed).addr(), (&raw const arr[1]).addr());
2369    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), (&raw const arr[0]).addr());
2370    /// ```
2371    #[inline]
2372    #[cfg(target_has_atomic = "ptr")]
2373    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2374    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2375    #[rustc_should_not_be_called_on_const_items]
2376    pub fn fetch_byte_sub(&self, val: usize, order: Ordering) -> *mut T {
2377        // SAFETY: data races are prevented by atomic intrinsics.
2378        unsafe { atomic_sub(self.p.get(), val, order).cast() }
2379    }
2380
2381    /// Performs a bitwise "or" operation on the address of the current pointer,
2382    /// and the argument `val`, and stores a pointer with provenance of the
2383    /// current pointer and the resulting address.
2384    ///
2385    /// This is equivalent to using [`map_addr`] to atomically perform
2386    /// `ptr = ptr.map_addr(|a| a | val)`. This can be used in tagged
2387    /// pointer schemes to atomically set tag bits.
2388    ///
2389    /// **Caveat**: This operation returns the previous value. To compute the
2390    /// stored value without losing provenance, you may use [`map_addr`]. For
2391    /// example: `a.fetch_or(val).map_addr(|a| a | val)`.
2392    ///
2393    /// `fetch_or` takes an [`Ordering`] argument which describes the memory
2394    /// ordering of this operation. All ordering modes are possible. Note that
2395    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2396    /// and using [`Release`] makes the load part [`Relaxed`].
2397    ///
2398    /// **Note**: This method is only available on platforms that support atomic
2399    /// operations on [`AtomicPtr`].
2400    ///
2401    /// This API and its claimed semantics are part of the Strict Provenance
2402    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2403    /// details.
2404    ///
2405    /// [`map_addr`]: pointer::map_addr
2406    ///
2407    /// # Examples
2408    ///
2409    /// ```
2410    /// use core::sync::atomic::{AtomicPtr, Ordering};
2411    ///
2412    /// let pointer = &mut 3i64 as *mut i64;
2413    ///
2414    /// let atom = AtomicPtr::<i64>::new(pointer);
2415    /// // Tag the bottom bit of the pointer.
2416    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 0);
2417    /// // Extract and untag.
2418    /// let tagged = atom.load(Ordering::Relaxed);
2419    /// assert_eq!(tagged.addr() & 1, 1);
2420    /// assert_eq!(tagged.map_addr(|p| p & !1), pointer);
2421    /// ```
2422    #[inline]
2423    #[cfg(target_has_atomic = "ptr")]
2424    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2425    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2426    #[rustc_should_not_be_called_on_const_items]
2427    pub fn fetch_or(&self, val: usize, order: Ordering) -> *mut T {
2428        // SAFETY: data races are prevented by atomic intrinsics.
2429        unsafe { atomic_or(self.p.get(), val, order).cast() }
2430    }
2431
2432    /// Performs a bitwise "and" operation on the address of the current
2433    /// pointer, and the argument `val`, and stores a pointer with provenance of
2434    /// the current pointer and the resulting address.
2435    ///
2436    /// This is equivalent to using [`map_addr`] to atomically perform
2437    /// `ptr = ptr.map_addr(|a| a & val)`. This can be used in tagged
2438    /// pointer schemes to atomically unset tag bits.
2439    ///
2440    /// **Caveat**: This operation returns the previous value. To compute the
2441    /// stored value without losing provenance, you may use [`map_addr`]. For
2442    /// example: `a.fetch_and(val).map_addr(|a| a & val)`.
2443    ///
2444    /// `fetch_and` takes an [`Ordering`] argument which describes the memory
2445    /// ordering of this operation. All ordering modes are possible. Note that
2446    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2447    /// and using [`Release`] makes the load part [`Relaxed`].
2448    ///
2449    /// **Note**: This method is only available on platforms that support atomic
2450    /// operations on [`AtomicPtr`].
2451    ///
2452    /// This API and its claimed semantics are part of the Strict Provenance
2453    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2454    /// details.
2455    ///
2456    /// [`map_addr`]: pointer::map_addr
2457    ///
2458    /// # Examples
2459    ///
2460    /// ```
2461    /// use core::sync::atomic::{AtomicPtr, Ordering};
2462    ///
2463    /// let pointer = &mut 3i64 as *mut i64;
2464    /// // A tagged pointer
2465    /// let atom = AtomicPtr::<i64>::new(pointer.map_addr(|a| a | 1));
2466    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 1);
2467    /// // Untag, and extract the previously tagged pointer.
2468    /// let untagged = atom.fetch_and(!1, Ordering::Relaxed)
2469    ///     .map_addr(|a| a & !1);
2470    /// assert_eq!(untagged, pointer);
2471    /// ```
2472    #[inline]
2473    #[cfg(target_has_atomic = "ptr")]
2474    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2475    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2476    #[rustc_should_not_be_called_on_const_items]
2477    pub fn fetch_and(&self, val: usize, order: Ordering) -> *mut T {
2478        // SAFETY: data races are prevented by atomic intrinsics.
2479        unsafe { atomic_and(self.p.get(), val, order).cast() }
2480    }
2481
2482    /// Performs a bitwise "xor" operation on the address of the current
2483    /// pointer, and the argument `val`, and stores a pointer with provenance of
2484    /// the current pointer and the resulting address.
2485    ///
2486    /// This is equivalent to using [`map_addr`] to atomically perform
2487    /// `ptr = ptr.map_addr(|a| a ^ val)`. This can be used in tagged
2488    /// pointer schemes to atomically toggle tag bits.
2489    ///
2490    /// **Caveat**: This operation returns the previous value. To compute the
2491    /// stored value without losing provenance, you may use [`map_addr`]. For
2492    /// example: `a.fetch_xor(val).map_addr(|a| a ^ val)`.
2493    ///
2494    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory
2495    /// ordering of this operation. All ordering modes are possible. Note that
2496    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2497    /// and using [`Release`] makes the load part [`Relaxed`].
2498    ///
2499    /// **Note**: This method is only available on platforms that support atomic
2500    /// operations on [`AtomicPtr`].
2501    ///
2502    /// This API and its claimed semantics are part of the Strict Provenance
2503    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2504    /// details.
2505    ///
2506    /// [`map_addr`]: pointer::map_addr
2507    ///
2508    /// # Examples
2509    ///
2510    /// ```
2511    /// use core::sync::atomic::{AtomicPtr, Ordering};
2512    ///
2513    /// let pointer = &mut 3i64 as *mut i64;
2514    /// let atom = AtomicPtr::<i64>::new(pointer);
2515    ///
2516    /// // Toggle a tag bit on the pointer.
2517    /// atom.fetch_xor(1, Ordering::Relaxed);
2518    /// assert_eq!(atom.load(Ordering::Relaxed).addr() & 1, 1);
2519    /// ```
2520    #[inline]
2521    #[cfg(target_has_atomic = "ptr")]
2522    #[stable(feature = "strict_provenance_atomic_ptr", since = "1.91.0")]
2523    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2524    #[rustc_should_not_be_called_on_const_items]
2525    pub fn fetch_xor(&self, val: usize, order: Ordering) -> *mut T {
2526        // SAFETY: data races are prevented by atomic intrinsics.
2527        unsafe { atomic_xor(self.p.get(), val, order).cast() }
2528    }
2529
2530    /// Returns a mutable pointer to the underlying pointer.
2531    ///
2532    /// Doing non-atomic reads and writes on the resulting pointer can be a data race.
2533    /// This method is mostly useful for FFI, where the function signature may use
2534    /// `*mut *mut T` instead of `&AtomicPtr<T>`.
2535    ///
2536    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
2537    /// atomic types work with interior mutability. All modifications of an atomic change the value
2538    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
2539    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
2540    /// requirements of the [memory model].
2541    ///
2542    /// # Examples
2543    ///
2544    /// ```ignore (extern-declaration)
2545    /// use std::sync::atomic::AtomicPtr;
2546    ///
2547    /// extern "C" {
2548    ///     fn my_atomic_op(arg: *mut *mut u32);
2549    /// }
2550    ///
2551    /// let mut value = 17;
2552    /// let atomic = AtomicPtr::new(&mut value);
2553    ///
2554    /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
2555    /// unsafe {
2556    ///     my_atomic_op(atomic.as_ptr());
2557    /// }
2558    /// ```
2559    ///
2560    /// [memory model]: self#memory-model-for-atomic-accesses
2561    #[inline]
2562    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
2563    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
2564    #[rustc_never_returns_null_ptr]
2565    pub const fn as_ptr(&self) -> *mut *mut T {
2566        self.p.get()
2567    }
2568}
2569
2570#[cfg(target_has_atomic_load_store = "8")]
2571#[stable(feature = "atomic_bool_from", since = "1.24.0")]
2572#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2573impl const From<bool> for AtomicBool {
2574    /// Converts a `bool` into an `AtomicBool`.
2575    ///
2576    /// # Examples
2577    ///
2578    /// ```
2579    /// use std::sync::atomic::AtomicBool;
2580    /// let atomic_bool = AtomicBool::from(true);
2581    /// assert_eq!(format!("{atomic_bool:?}"), "true")
2582    /// ```
2583    #[inline]
2584    fn from(b: bool) -> Self {
2585        Self::new(b)
2586    }
2587}
2588
2589#[cfg(target_has_atomic_load_store = "ptr")]
2590#[stable(feature = "atomic_from", since = "1.23.0")]
2591#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2592impl<T> const From<*mut T> for AtomicPtr<T> {
2593    /// Converts a `*mut T` into an `AtomicPtr<T>`.
2594    #[inline]
2595    fn from(p: *mut T) -> Self {
2596        Self::new(p)
2597    }
2598}
2599
2600#[allow(unused_macros)] // This macro ends up being unused on some architectures.
2601macro_rules! if_8_bit {
2602    (u8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2603    (i8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2604    ($_:ident, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($no)*)?) };
2605}
2606
2607#[cfg(target_has_atomic_load_store)]
2608macro_rules! atomic_int {
2609    ($cfg_cas:meta,
2610     $cfg_align:meta,
2611     $stable:meta,
2612     $stable_cxchg:meta,
2613     $stable_debug:meta,
2614     $stable_access:meta,
2615     $stable_from:meta,
2616     $stable_nand:meta,
2617     $const_stable_new:meta,
2618     $const_stable_into_inner:meta,
2619     $diagnostic_item:meta,
2620     $s_int_type:literal,
2621     $extra_feature:expr,
2622     $min_fn:ident, $max_fn:ident,
2623     $align:expr,
2624     $int_type:ident $atomic_type:ident) => {
2625        /// An integer type which can be safely shared between threads.
2626        ///
2627        /// This type has the same
2628        #[doc = if_8_bit!(
2629            $int_type,
2630            yes = ["size, alignment, and bit validity"],
2631            no = ["size and bit validity"],
2632        )]
2633        /// as the underlying integer type, [`
2634        #[doc = $s_int_type]
2635        /// `].
2636        #[doc = if_8_bit! {
2637            $int_type,
2638            no = [
2639                "However, the alignment of this type is always equal to its ",
2640                "size, even on targets where [`", $s_int_type, "`] has a ",
2641                "lesser alignment."
2642            ],
2643        }]
2644        ///
2645        /// For more about the differences between atomic types and
2646        /// non-atomic types as well as information about the portability of
2647        /// this type, please see the [module-level documentation].
2648        ///
2649        /// **Note:** This type is only available on platforms that support
2650        /// atomic loads and stores of [`
2651        #[doc = $s_int_type]
2652        /// `].
2653        ///
2654        /// [module-level documentation]: crate::sync::atomic
2655        #[$stable]
2656        #[$diagnostic_item]
2657        #[repr(C, align($align))]
2658        pub struct $atomic_type {
2659            v: UnsafeCell<$int_type>,
2660        }
2661
2662        #[$stable]
2663        impl Default for $atomic_type {
2664            #[inline]
2665            fn default() -> Self {
2666                Self::new(Default::default())
2667            }
2668        }
2669
2670        #[$stable_from]
2671        #[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2672        impl const From<$int_type> for $atomic_type {
2673            #[doc = concat!("Converts an `", stringify!($int_type), "` into an `", stringify!($atomic_type), "`.")]
2674            #[inline]
2675            fn from(v: $int_type) -> Self { Self::new(v) }
2676        }
2677
2678        #[$stable_debug]
2679        impl fmt::Debug for $atomic_type {
2680            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2681                fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
2682            }
2683        }
2684
2685        // Send is implicitly implemented.
2686        #[$stable]
2687        unsafe impl Sync for $atomic_type {}
2688
2689        impl $atomic_type {
2690            /// Creates a new atomic integer.
2691            ///
2692            /// # Examples
2693            ///
2694            /// ```
2695            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2696            ///
2697            #[doc = concat!("let atomic_forty_two = ", stringify!($atomic_type), "::new(42);")]
2698            /// ```
2699            #[inline]
2700            #[$stable]
2701            #[$const_stable_new]
2702            #[must_use]
2703            pub const fn new(v: $int_type) -> Self {
2704                Self {v: UnsafeCell::new(v)}
2705            }
2706
2707            /// Creates a new reference to an atomic integer from a pointer.
2708            ///
2709            /// # Examples
2710            ///
2711            /// ```
2712            #[doc = concat!($extra_feature, "use std::sync::atomic::{self, ", stringify!($atomic_type), "};")]
2713            ///
2714            /// // Get a pointer to an allocated value
2715            #[doc = concat!("let ptr: *mut ", stringify!($int_type), " = Box::into_raw(Box::new(0));")]
2716            ///
2717            #[doc = concat!("assert!(ptr.cast::<", stringify!($atomic_type), ">().is_aligned());")]
2718            ///
2719            /// {
2720            ///     // Create an atomic view of the allocated value
2721            // SAFETY: this is a doc comment, tidy, it can't hurt you (also guaranteed by the construction of `ptr` and the assert above)
2722            #[doc = concat!("    let atomic = unsafe {", stringify!($atomic_type), "::from_ptr(ptr) };")]
2723            ///
2724            ///     // Use `atomic` for atomic operations, possibly share it with other threads
2725            ///     atomic.store(1, atomic::Ordering::Relaxed);
2726            /// }
2727            ///
2728            /// // It's ok to non-atomically access the value behind `ptr`,
2729            /// // since the reference to the atomic ended its lifetime in the block above
2730            /// assert_eq!(unsafe { *ptr }, 1);
2731            ///
2732            /// // Deallocate the value
2733            /// unsafe { drop(Box::from_raw(ptr)) }
2734            /// ```
2735            ///
2736            /// # Safety
2737            ///
2738            /// * `ptr` must be aligned to
2739            #[doc = concat!("  `align_of::<", stringify!($atomic_type), ">()`")]
2740            #[doc = if_8_bit!{
2741                $int_type,
2742                yes = [
2743                    "  (note that this is always true, since `align_of::<",
2744                    stringify!($atomic_type), ">() == 1`)."
2745                ],
2746                no = [
2747                    "  (note that on some platforms this can be bigger than `align_of::<",
2748                    stringify!($int_type), ">()`)."
2749                ],
2750            }]
2751            /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
2752            /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
2753            ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
2754            ///   sizes, without synchronization.
2755            ///
2756            /// [valid]: crate::ptr#safety
2757            /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
2758            #[inline]
2759            #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
2760            #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
2761            pub const unsafe fn from_ptr<'a>(ptr: *mut $int_type) -> &'a $atomic_type {
2762                // SAFETY: guaranteed by the caller
2763                unsafe { &*ptr.cast() }
2764            }
2765
2766
2767            /// Returns a mutable reference to the underlying integer.
2768            ///
2769            /// This is safe because the mutable reference guarantees that no other threads are
2770            /// concurrently accessing the atomic data.
2771            ///
2772            /// # Examples
2773            ///
2774            /// ```
2775            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2776            ///
2777            #[doc = concat!("let mut some_var = ", stringify!($atomic_type), "::new(10);")]
2778            /// assert_eq!(*some_var.get_mut(), 10);
2779            /// *some_var.get_mut() = 5;
2780            /// assert_eq!(some_var.load(Ordering::SeqCst), 5);
2781            /// ```
2782            #[inline]
2783            #[$stable_access]
2784            pub fn get_mut(&mut self) -> &mut $int_type {
2785                self.v.get_mut()
2786            }
2787
2788            #[doc = concat!("Get atomic access to a `&mut ", stringify!($int_type), "`.")]
2789            ///
2790            #[doc = if_8_bit! {
2791                $int_type,
2792                no = [
2793                    "**Note:** This function is only available on targets where `",
2794                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2795                ],
2796            }]
2797            ///
2798            /// # Examples
2799            ///
2800            /// ```
2801            /// #![feature(atomic_from_mut)]
2802            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2803            ///
2804            /// let mut some_int = 123;
2805            #[doc = concat!("let a = ", stringify!($atomic_type), "::from_mut(&mut some_int);")]
2806            /// a.store(100, Ordering::Relaxed);
2807            /// assert_eq!(some_int, 100);
2808            /// ```
2809            ///
2810            #[inline]
2811            #[$cfg_align]
2812            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2813            pub fn from_mut(v: &mut $int_type) -> &mut Self {
2814                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2815                // SAFETY:
2816                //  - the mutable reference guarantees unique ownership.
2817                //  - the alignment of `$int_type` and `Self` is the
2818                //    same, as promised by $cfg_align and verified above.
2819                unsafe { &mut *(v as *mut $int_type as *mut Self) }
2820            }
2821
2822            #[doc = concat!("Get non-atomic access to a `&mut [", stringify!($atomic_type), "]` slice")]
2823            ///
2824            /// This is safe because the mutable reference guarantees that no other threads are
2825            /// concurrently accessing the atomic data.
2826            ///
2827            /// # Examples
2828            ///
2829            /// ```ignore-wasm
2830            /// #![feature(atomic_from_mut)]
2831            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2832            ///
2833            #[doc = concat!("let mut some_ints = [const { ", stringify!($atomic_type), "::new(0) }; 10];")]
2834            ///
2835            #[doc = concat!("let view: &mut [", stringify!($int_type), "] = ", stringify!($atomic_type), "::get_mut_slice(&mut some_ints);")]
2836            /// assert_eq!(view, [0; 10]);
2837            /// view
2838            ///     .iter_mut()
2839            ///     .enumerate()
2840            ///     .for_each(|(idx, int)| *int = idx as _);
2841            ///
2842            /// std::thread::scope(|s| {
2843            ///     some_ints
2844            ///         .iter()
2845            ///         .enumerate()
2846            ///         .for_each(|(idx, int)| {
2847            ///             s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
2848            ///         })
2849            /// });
2850            /// ```
2851            #[inline]
2852            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2853            pub fn get_mut_slice(this: &mut [Self]) -> &mut [$int_type] {
2854                // SAFETY: the mutable reference guarantees unique ownership.
2855                unsafe { &mut *(this as *mut [Self] as *mut [$int_type]) }
2856            }
2857
2858            #[doc = concat!("Get atomic access to a `&mut [", stringify!($int_type), "]` slice.")]
2859            ///
2860            #[doc = if_8_bit! {
2861                $int_type,
2862                no = [
2863                    "**Note:** This function is only available on targets where `",
2864                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2865                ],
2866            }]
2867            ///
2868            /// # Examples
2869            ///
2870            /// ```ignore-wasm
2871            /// #![feature(atomic_from_mut)]
2872            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2873            ///
2874            /// let mut some_ints = [0; 10];
2875            #[doc = concat!("let a = &*", stringify!($atomic_type), "::from_mut_slice(&mut some_ints);")]
2876            /// std::thread::scope(|s| {
2877            ///     for i in 0..a.len() {
2878            ///         s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
2879            ///     }
2880            /// });
2881            /// for (i, n) in some_ints.into_iter().enumerate() {
2882            ///     assert_eq!(i, n as usize);
2883            /// }
2884            /// ```
2885            #[inline]
2886            #[$cfg_align]
2887            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2888            pub fn from_mut_slice(v: &mut [$int_type]) -> &mut [Self] {
2889                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2890                // SAFETY:
2891                //  - the mutable reference guarantees unique ownership.
2892                //  - the alignment of `$int_type` and `Self` is the
2893                //    same, as promised by $cfg_align and verified above.
2894                unsafe { &mut *(v as *mut [$int_type] as *mut [Self]) }
2895            }
2896
2897            /// Consumes the atomic and returns the contained value.
2898            ///
2899            /// This is safe because passing `self` by value guarantees that no other threads are
2900            /// concurrently accessing the atomic data.
2901            ///
2902            /// # Examples
2903            ///
2904            /// ```
2905            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2906            ///
2907            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2908            /// assert_eq!(some_var.into_inner(), 5);
2909            /// ```
2910            #[inline]
2911            #[$stable_access]
2912            #[$const_stable_into_inner]
2913            pub const fn into_inner(self) -> $int_type {
2914                self.v.into_inner()
2915            }
2916
2917            /// Loads a value from the atomic integer.
2918            ///
2919            /// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2920            /// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
2921            ///
2922            /// # Panics
2923            ///
2924            /// Panics if `order` is [`Release`] or [`AcqRel`].
2925            ///
2926            /// # Examples
2927            ///
2928            /// ```
2929            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2930            ///
2931            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2932            ///
2933            /// assert_eq!(some_var.load(Ordering::Relaxed), 5);
2934            /// ```
2935            #[inline]
2936            #[$stable]
2937            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2938            pub fn load(&self, order: Ordering) -> $int_type {
2939                // SAFETY: data races are prevented by atomic intrinsics.
2940                unsafe { atomic_load(self.v.get(), order) }
2941            }
2942
2943            /// Stores a value into the atomic integer.
2944            ///
2945            /// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2946            ///  Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
2947            ///
2948            /// # Panics
2949            ///
2950            /// Panics if `order` is [`Acquire`] or [`AcqRel`].
2951            ///
2952            /// # Examples
2953            ///
2954            /// ```
2955            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2956            ///
2957            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2958            ///
2959            /// some_var.store(10, Ordering::Relaxed);
2960            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2961            /// ```
2962            #[inline]
2963            #[$stable]
2964            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2965            #[rustc_should_not_be_called_on_const_items]
2966            pub fn store(&self, val: $int_type, order: Ordering) {
2967                // SAFETY: data races are prevented by atomic intrinsics.
2968                unsafe { atomic_store(self.v.get(), val, order); }
2969            }
2970
2971            /// Stores a value into the atomic integer, returning the previous value.
2972            ///
2973            /// `swap` takes an [`Ordering`] argument which describes the memory ordering
2974            /// of this operation. All ordering modes are possible. Note that using
2975            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2976            /// using [`Release`] makes the load part [`Relaxed`].
2977            ///
2978            /// **Note**: This method is only available on platforms that support atomic operations on
2979            #[doc = concat!("[`", $s_int_type, "`].")]
2980            ///
2981            /// # Examples
2982            ///
2983            /// ```
2984            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2985            ///
2986            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2987            ///
2988            /// assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
2989            /// ```
2990            #[inline]
2991            #[$stable]
2992            #[$cfg_cas]
2993            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2994            #[rustc_should_not_be_called_on_const_items]
2995            pub fn swap(&self, val: $int_type, order: Ordering) -> $int_type {
2996                // SAFETY: data races are prevented by atomic intrinsics.
2997                unsafe { atomic_swap(self.v.get(), val, order) }
2998            }
2999
3000            /// Stores a value into the atomic integer if the current value is the same as
3001            /// the `current` value.
3002            ///
3003            /// The return value is always the previous value. If it is equal to `current`, then the
3004            /// value was updated.
3005            ///
3006            /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
3007            /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
3008            /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
3009            /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
3010            /// happens, and using [`Release`] makes the load part [`Relaxed`].
3011            ///
3012            /// **Note**: This method is only available on platforms that support atomic operations on
3013            #[doc = concat!("[`", $s_int_type, "`].")]
3014            ///
3015            /// # Migrating to `compare_exchange` and `compare_exchange_weak`
3016            ///
3017            /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
3018            /// memory orderings:
3019            ///
3020            /// Original | Success | Failure
3021            /// -------- | ------- | -------
3022            /// Relaxed  | Relaxed | Relaxed
3023            /// Acquire  | Acquire | Acquire
3024            /// Release  | Release | Relaxed
3025            /// AcqRel   | AcqRel  | Acquire
3026            /// SeqCst   | SeqCst  | SeqCst
3027            ///
3028            /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
3029            /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
3030            /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
3031            /// rather than to infer success vs failure based on the value that was read.
3032            ///
3033            /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
3034            /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
3035            /// which allows the compiler to generate better assembly code when the compare and swap
3036            /// is used in a loop.
3037            ///
3038            /// # Examples
3039            ///
3040            /// ```
3041            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3042            ///
3043            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3044            ///
3045            /// assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
3046            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3047            ///
3048            /// assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
3049            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3050            /// ```
3051            #[inline]
3052            #[$stable]
3053            #[deprecated(
3054                since = "1.50.0",
3055                note = "Use `compare_exchange` or `compare_exchange_weak` instead")
3056            ]
3057            #[$cfg_cas]
3058            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3059            #[rustc_should_not_be_called_on_const_items]
3060            pub fn compare_and_swap(&self,
3061                                    current: $int_type,
3062                                    new: $int_type,
3063                                    order: Ordering) -> $int_type {
3064                match self.compare_exchange(current,
3065                                            new,
3066                                            order,
3067                                            strongest_failure_ordering(order)) {
3068                    Ok(x) => x,
3069                    Err(x) => x,
3070                }
3071            }
3072
3073            /// Stores a value into the atomic integer if the current value is the same as
3074            /// the `current` value.
3075            ///
3076            /// The return value is a result indicating whether the new value was written and
3077            /// containing the previous value. On success this value is guaranteed to be equal to
3078            /// `current`.
3079            ///
3080            /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
3081            /// ordering of this operation. `success` describes the required ordering for the
3082            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3083            /// `failure` describes the required ordering for the load operation that takes place when
3084            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3085            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3086            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3087            ///
3088            /// **Note**: This method is only available on platforms that support atomic operations on
3089            #[doc = concat!("[`", $s_int_type, "`].")]
3090            ///
3091            /// # Examples
3092            ///
3093            /// ```
3094            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3095            ///
3096            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3097            ///
3098            /// assert_eq!(some_var.compare_exchange(5, 10,
3099            ///                                      Ordering::Acquire,
3100            ///                                      Ordering::Relaxed),
3101            ///            Ok(5));
3102            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3103            ///
3104            /// assert_eq!(some_var.compare_exchange(6, 12,
3105            ///                                      Ordering::SeqCst,
3106            ///                                      Ordering::Acquire),
3107            ///            Err(10));
3108            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3109            /// ```
3110            ///
3111            /// # Considerations
3112            ///
3113            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3114            /// of CAS operations. In particular, a load of the value followed by a successful
3115            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3116            /// changed the value in the interim! This is usually important when the *equality* check in
3117            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3118            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3119            /// a pointer holding the same address does not imply that the same object exists at that
3120            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3121            ///
3122            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3123            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3124            #[inline]
3125            #[$stable_cxchg]
3126            #[$cfg_cas]
3127            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3128            #[rustc_should_not_be_called_on_const_items]
3129            pub fn compare_exchange(&self,
3130                                    current: $int_type,
3131                                    new: $int_type,
3132                                    success: Ordering,
3133                                    failure: Ordering) -> Result<$int_type, $int_type> {
3134                // SAFETY: data races are prevented by atomic intrinsics.
3135                unsafe { atomic_compare_exchange(self.v.get(), current, new, success, failure) }
3136            }
3137
3138            /// Stores a value into the atomic integer if the current value is the same as
3139            /// the `current` value.
3140            ///
3141            #[doc = concat!("Unlike [`", stringify!($atomic_type), "::compare_exchange`],")]
3142            /// this function is allowed to spuriously fail even
3143            /// when the comparison succeeds, which can result in more efficient code on some
3144            /// platforms. The return value is a result indicating whether the new value was
3145            /// written and containing the previous value.
3146            ///
3147            /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
3148            /// ordering of this operation. `success` describes the required ordering for the
3149            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3150            /// `failure` describes the required ordering for the load operation that takes place when
3151            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3152            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3153            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3154            ///
3155            /// **Note**: This method is only available on platforms that support atomic operations on
3156            #[doc = concat!("[`", $s_int_type, "`].")]
3157            ///
3158            /// # Examples
3159            ///
3160            /// ```
3161            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3162            ///
3163            #[doc = concat!("let val = ", stringify!($atomic_type), "::new(4);")]
3164            ///
3165            /// let mut old = val.load(Ordering::Relaxed);
3166            /// loop {
3167            ///     let new = old * 2;
3168            ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
3169            ///         Ok(_) => break,
3170            ///         Err(x) => old = x,
3171            ///     }
3172            /// }
3173            /// ```
3174            ///
3175            /// # Considerations
3176            ///
3177            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3178            /// of CAS operations. In particular, a load of the value followed by a successful
3179            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3180            /// changed the value in the interim. This is usually important when the *equality* check in
3181            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3182            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3183            /// a pointer holding the same address does not imply that the same object exists at that
3184            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3185            ///
3186            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3187            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3188            #[inline]
3189            #[$stable_cxchg]
3190            #[$cfg_cas]
3191            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3192            #[rustc_should_not_be_called_on_const_items]
3193            pub fn compare_exchange_weak(&self,
3194                                         current: $int_type,
3195                                         new: $int_type,
3196                                         success: Ordering,
3197                                         failure: Ordering) -> Result<$int_type, $int_type> {
3198                // SAFETY: data races are prevented by atomic intrinsics.
3199                unsafe {
3200                    atomic_compare_exchange_weak(self.v.get(), current, new, success, failure)
3201                }
3202            }
3203
3204            /// Adds to the current value, returning the previous value.
3205            ///
3206            /// This operation wraps around on overflow.
3207            ///
3208            /// `fetch_add` takes an [`Ordering`] argument which describes the memory ordering
3209            /// of this operation. All ordering modes are possible. Note that using
3210            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3211            /// using [`Release`] makes the load part [`Relaxed`].
3212            ///
3213            /// **Note**: This method is only available on platforms that support atomic operations on
3214            #[doc = concat!("[`", $s_int_type, "`].")]
3215            ///
3216            /// # Examples
3217            ///
3218            /// ```
3219            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3220            ///
3221            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0);")]
3222            /// assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
3223            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3224            /// ```
3225            #[inline]
3226            #[$stable]
3227            #[$cfg_cas]
3228            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3229            #[rustc_should_not_be_called_on_const_items]
3230            pub fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type {
3231                // SAFETY: data races are prevented by atomic intrinsics.
3232                unsafe { atomic_add(self.v.get(), val, order) }
3233            }
3234
3235            /// Subtracts from the current value, returning the previous value.
3236            ///
3237            /// This operation wraps around on overflow.
3238            ///
3239            /// `fetch_sub` takes an [`Ordering`] argument which describes the memory ordering
3240            /// of this operation. All ordering modes are possible. Note that using
3241            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3242            /// using [`Release`] makes the load part [`Relaxed`].
3243            ///
3244            /// **Note**: This method is only available on platforms that support atomic operations on
3245            #[doc = concat!("[`", $s_int_type, "`].")]
3246            ///
3247            /// # Examples
3248            ///
3249            /// ```
3250            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3251            ///
3252            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(20);")]
3253            /// assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
3254            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3255            /// ```
3256            #[inline]
3257            #[$stable]
3258            #[$cfg_cas]
3259            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3260            #[rustc_should_not_be_called_on_const_items]
3261            pub fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type {
3262                // SAFETY: data races are prevented by atomic intrinsics.
3263                unsafe { atomic_sub(self.v.get(), val, order) }
3264            }
3265
3266            /// Bitwise "and" with the current value.
3267            ///
3268            /// Performs a bitwise "and" operation on the current value and the argument `val`, and
3269            /// sets the new value to the result.
3270            ///
3271            /// Returns the previous value.
3272            ///
3273            /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
3274            /// of this operation. All ordering modes are possible. Note that using
3275            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3276            /// using [`Release`] makes the load part [`Relaxed`].
3277            ///
3278            /// **Note**: This method is only available on platforms that support atomic operations on
3279            #[doc = concat!("[`", $s_int_type, "`].")]
3280            ///
3281            /// # Examples
3282            ///
3283            /// ```
3284            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3285            ///
3286            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3287            /// assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
3288            /// assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
3289            /// ```
3290            #[inline]
3291            #[$stable]
3292            #[$cfg_cas]
3293            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3294            #[rustc_should_not_be_called_on_const_items]
3295            pub fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type {
3296                // SAFETY: data races are prevented by atomic intrinsics.
3297                unsafe { atomic_and(self.v.get(), val, order) }
3298            }
3299
3300            /// Bitwise "nand" with the current value.
3301            ///
3302            /// Performs a bitwise "nand" operation on the current value and the argument `val`, and
3303            /// sets the new value to the result.
3304            ///
3305            /// Returns the previous value.
3306            ///
3307            /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
3308            /// of this operation. All ordering modes are possible. Note that using
3309            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3310            /// using [`Release`] makes the load part [`Relaxed`].
3311            ///
3312            /// **Note**: This method is only available on platforms that support atomic operations on
3313            #[doc = concat!("[`", $s_int_type, "`].")]
3314            ///
3315            /// # Examples
3316            ///
3317            /// ```
3318            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3319            ///
3320            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0x13);")]
3321            /// assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
3322            /// assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
3323            /// ```
3324            #[inline]
3325            #[$stable_nand]
3326            #[$cfg_cas]
3327            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3328            #[rustc_should_not_be_called_on_const_items]
3329            pub fn fetch_nand(&self, val: $int_type, order: Ordering) -> $int_type {
3330                // SAFETY: data races are prevented by atomic intrinsics.
3331                unsafe { atomic_nand(self.v.get(), val, order) }
3332            }
3333
3334            /// Bitwise "or" with the current value.
3335            ///
3336            /// Performs a bitwise "or" operation on the current value and the argument `val`, and
3337            /// sets the new value to the result.
3338            ///
3339            /// Returns the previous value.
3340            ///
3341            /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
3342            /// of this operation. All ordering modes are possible. Note that using
3343            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3344            /// using [`Release`] makes the load part [`Relaxed`].
3345            ///
3346            /// **Note**: This method is only available on platforms that support atomic operations on
3347            #[doc = concat!("[`", $s_int_type, "`].")]
3348            ///
3349            /// # Examples
3350            ///
3351            /// ```
3352            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3353            ///
3354            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3355            /// assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
3356            /// assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
3357            /// ```
3358            #[inline]
3359            #[$stable]
3360            #[$cfg_cas]
3361            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3362            #[rustc_should_not_be_called_on_const_items]
3363            pub fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type {
3364                // SAFETY: data races are prevented by atomic intrinsics.
3365                unsafe { atomic_or(self.v.get(), val, order) }
3366            }
3367
3368            /// Bitwise "xor" with the current value.
3369            ///
3370            /// Performs a bitwise "xor" operation on the current value and the argument `val`, and
3371            /// sets the new value to the result.
3372            ///
3373            /// Returns the previous value.
3374            ///
3375            /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
3376            /// of this operation. All ordering modes are possible. Note that using
3377            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3378            /// using [`Release`] makes the load part [`Relaxed`].
3379            ///
3380            /// **Note**: This method is only available on platforms that support atomic operations on
3381            #[doc = concat!("[`", $s_int_type, "`].")]
3382            ///
3383            /// # Examples
3384            ///
3385            /// ```
3386            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3387            ///
3388            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3389            /// assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
3390            /// assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
3391            /// ```
3392            #[inline]
3393            #[$stable]
3394            #[$cfg_cas]
3395            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3396            #[rustc_should_not_be_called_on_const_items]
3397            pub fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type {
3398                // SAFETY: data races are prevented by atomic intrinsics.
3399                unsafe { atomic_xor(self.v.get(), val, order) }
3400            }
3401
3402            /// Fetches the value, and applies a function to it that returns an optional
3403            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3404            /// `Err(previous_value)`.
3405            ///
3406            /// Note: This may call the function multiple times if the value has been changed from other threads in
3407            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3408            /// only once to the stored value.
3409            ///
3410            /// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3411            /// The first describes the required ordering for when the operation finally succeeds while the second
3412            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3413            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3414            /// respectively.
3415            ///
3416            /// Using [`Acquire`] as success ordering makes the store part
3417            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3418            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3419            ///
3420            /// **Note**: This method is only available on platforms that support atomic operations on
3421            #[doc = concat!("[`", $s_int_type, "`].")]
3422            ///
3423            /// # Considerations
3424            ///
3425            /// This method is not magic; it is not provided by the hardware, and does not act like a
3426            /// critical section or mutex.
3427            ///
3428            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3429            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3430            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3431            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3432            ///
3433            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3434            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3435            ///
3436            /// # Examples
3437            ///
3438            /// ```rust
3439            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3440            ///
3441            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3442            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3443            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3444            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3445            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3446            /// ```
3447            #[inline]
3448            #[stable(feature = "no_more_cas", since = "1.45.0")]
3449            #[$cfg_cas]
3450            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3451            #[rustc_should_not_be_called_on_const_items]
3452            pub fn fetch_update<F>(&self,
3453                                   set_order: Ordering,
3454                                   fetch_order: Ordering,
3455                                   mut f: F) -> Result<$int_type, $int_type>
3456            where F: FnMut($int_type) -> Option<$int_type> {
3457                let mut prev = self.load(fetch_order);
3458                while let Some(next) = f(prev) {
3459                    match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
3460                        x @ Ok(_) => return x,
3461                        Err(next_prev) => prev = next_prev
3462                    }
3463                }
3464                Err(prev)
3465            }
3466
3467            /// Fetches the value, and applies a function to it that returns an optional
3468            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3469            /// `Err(previous_value)`.
3470            ///
3471            #[doc = concat!("See also: [`update`](`", stringify!($atomic_type), "::update`).")]
3472            ///
3473            /// Note: This may call the function multiple times if the value has been changed from other threads in
3474            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3475            /// only once to the stored value.
3476            ///
3477            /// `try_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3478            /// The first describes the required ordering for when the operation finally succeeds while the second
3479            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3480            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3481            /// respectively.
3482            ///
3483            /// Using [`Acquire`] as success ordering makes the store part
3484            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3485            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3486            ///
3487            /// **Note**: This method is only available on platforms that support atomic operations on
3488            #[doc = concat!("[`", $s_int_type, "`].")]
3489            ///
3490            /// # Considerations
3491            ///
3492            /// This method is not magic; it is not provided by the hardware, and does not act like a
3493            /// critical section or mutex.
3494            ///
3495            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3496            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3497            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3498            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3499            ///
3500            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3501            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3502            ///
3503            /// # Examples
3504            ///
3505            /// ```rust
3506            /// #![feature(atomic_try_update)]
3507            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3508            ///
3509            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3510            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3511            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3512            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3513            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3514            /// ```
3515            #[inline]
3516            #[unstable(feature = "atomic_try_update", issue = "135894")]
3517            #[$cfg_cas]
3518            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3519            #[rustc_should_not_be_called_on_const_items]
3520            pub fn try_update(
3521                &self,
3522                set_order: Ordering,
3523                fetch_order: Ordering,
3524                f: impl FnMut($int_type) -> Option<$int_type>,
3525            ) -> Result<$int_type, $int_type> {
3526                // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
3527                //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
3528                self.fetch_update(set_order, fetch_order, f)
3529            }
3530
3531            /// Fetches the value, applies a function to it that it return a new value.
3532            /// The new value is stored and the old value is returned.
3533            ///
3534            #[doc = concat!("See also: [`try_update`](`", stringify!($atomic_type), "::try_update`).")]
3535            ///
3536            /// Note: This may call the function multiple times if the value has been changed from other threads in
3537            /// the meantime, but the function will have been applied only once to the stored value.
3538            ///
3539            /// `update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3540            /// The first describes the required ordering for when the operation finally succeeds while the second
3541            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3542            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3543            /// respectively.
3544            ///
3545            /// Using [`Acquire`] as success ordering makes the store part
3546            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3547            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3548            ///
3549            /// **Note**: This method is only available on platforms that support atomic operations on
3550            #[doc = concat!("[`", $s_int_type, "`].")]
3551            ///
3552            /// # Considerations
3553            ///
3554            /// [CAS operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3555            /// This method is not magic; it is not provided by the hardware, and does not act like a
3556            /// critical section or mutex.
3557            ///
3558            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3559            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3560            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3561            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3562            ///
3563            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3564            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3565            ///
3566            /// # Examples
3567            ///
3568            /// ```rust
3569            /// #![feature(atomic_try_update)]
3570            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3571            ///
3572            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3573            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
3574            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
3575            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3576            /// ```
3577            #[inline]
3578            #[unstable(feature = "atomic_try_update", issue = "135894")]
3579            #[$cfg_cas]
3580            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3581            #[rustc_should_not_be_called_on_const_items]
3582            pub fn update(
3583                &self,
3584                set_order: Ordering,
3585                fetch_order: Ordering,
3586                mut f: impl FnMut($int_type) -> $int_type,
3587            ) -> $int_type {
3588                let mut prev = self.load(fetch_order);
3589                loop {
3590                    match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
3591                        Ok(x) => break x,
3592                        Err(next_prev) => prev = next_prev,
3593                    }
3594                }
3595            }
3596
3597            /// Maximum with the current value.
3598            ///
3599            /// Finds the maximum of the current value and the argument `val`, and
3600            /// sets the new value to the result.
3601            ///
3602            /// Returns the previous value.
3603            ///
3604            /// `fetch_max` takes an [`Ordering`] argument which describes the memory ordering
3605            /// of this operation. All ordering modes are possible. Note that using
3606            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3607            /// using [`Release`] makes the load part [`Relaxed`].
3608            ///
3609            /// **Note**: This method is only available on platforms that support atomic operations on
3610            #[doc = concat!("[`", $s_int_type, "`].")]
3611            ///
3612            /// # Examples
3613            ///
3614            /// ```
3615            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3616            ///
3617            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3618            /// assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
3619            /// assert_eq!(foo.load(Ordering::SeqCst), 42);
3620            /// ```
3621            ///
3622            /// If you want to obtain the maximum value in one step, you can use the following:
3623            ///
3624            /// ```
3625            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3626            ///
3627            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3628            /// let bar = 42;
3629            /// let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
3630            /// assert!(max_foo == 42);
3631            /// ```
3632            #[inline]
3633            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3634            #[$cfg_cas]
3635            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3636            #[rustc_should_not_be_called_on_const_items]
3637            pub fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type {
3638                // SAFETY: data races are prevented by atomic intrinsics.
3639                unsafe { $max_fn(self.v.get(), val, order) }
3640            }
3641
3642            /// Minimum with the current value.
3643            ///
3644            /// Finds the minimum of the current value and the argument `val`, and
3645            /// sets the new value to the result.
3646            ///
3647            /// Returns the previous value.
3648            ///
3649            /// `fetch_min` takes an [`Ordering`] argument which describes the memory ordering
3650            /// of this operation. All ordering modes are possible. Note that using
3651            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3652            /// using [`Release`] makes the load part [`Relaxed`].
3653            ///
3654            /// **Note**: This method is only available on platforms that support atomic operations on
3655            #[doc = concat!("[`", $s_int_type, "`].")]
3656            ///
3657            /// # Examples
3658            ///
3659            /// ```
3660            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3661            ///
3662            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3663            /// assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
3664            /// assert_eq!(foo.load(Ordering::Relaxed), 23);
3665            /// assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
3666            /// assert_eq!(foo.load(Ordering::Relaxed), 22);
3667            /// ```
3668            ///
3669            /// If you want to obtain the minimum value in one step, you can use the following:
3670            ///
3671            /// ```
3672            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3673            ///
3674            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3675            /// let bar = 12;
3676            /// let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
3677            /// assert_eq!(min_foo, 12);
3678            /// ```
3679            #[inline]
3680            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3681            #[$cfg_cas]
3682            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3683            #[rustc_should_not_be_called_on_const_items]
3684            pub fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type {
3685                // SAFETY: data races are prevented by atomic intrinsics.
3686                unsafe { $min_fn(self.v.get(), val, order) }
3687            }
3688
3689            /// Returns a mutable pointer to the underlying integer.
3690            ///
3691            /// Doing non-atomic reads and writes on the resulting integer can be a data race.
3692            /// This method is mostly useful for FFI, where the function signature may use
3693            #[doc = concat!("`*mut ", stringify!($int_type), "` instead of `&", stringify!($atomic_type), "`.")]
3694            ///
3695            /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
3696            /// atomic types work with interior mutability. All modifications of an atomic change the value
3697            /// through a shared reference, and can do so safely as long as they use atomic operations. Any
3698            /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
3699            /// requirements of the [memory model].
3700            ///
3701            /// # Examples
3702            ///
3703            /// ```ignore (extern-declaration)
3704            /// # fn main() {
3705            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
3706            ///
3707            /// extern "C" {
3708            #[doc = concat!("    fn my_atomic_op(arg: *mut ", stringify!($int_type), ");")]
3709            /// }
3710            ///
3711            #[doc = concat!("let atomic = ", stringify!($atomic_type), "::new(1);")]
3712            ///
3713            /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
3714            /// unsafe {
3715            ///     my_atomic_op(atomic.as_ptr());
3716            /// }
3717            /// # }
3718            /// ```
3719            ///
3720            /// [memory model]: self#memory-model-for-atomic-accesses
3721            #[inline]
3722            #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
3723            #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
3724            #[rustc_never_returns_null_ptr]
3725            pub const fn as_ptr(&self) -> *mut $int_type {
3726                self.v.get()
3727            }
3728        }
3729    }
3730}
3731
3732#[cfg(target_has_atomic_load_store = "8")]
3733atomic_int! {
3734    cfg(target_has_atomic = "8"),
3735    cfg(target_has_atomic_equal_alignment = "8"),
3736    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3737    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3738    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3739    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3740    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3741    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3742    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3743    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3744    rustc_diagnostic_item = "AtomicI8",
3745    "i8",
3746    "",
3747    atomic_min, atomic_max,
3748    1,
3749    i8 AtomicI8
3750}
3751#[cfg(target_has_atomic_load_store = "8")]
3752atomic_int! {
3753    cfg(target_has_atomic = "8"),
3754    cfg(target_has_atomic_equal_alignment = "8"),
3755    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3756    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3757    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3758    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3759    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3760    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3761    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3762    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3763    rustc_diagnostic_item = "AtomicU8",
3764    "u8",
3765    "",
3766    atomic_umin, atomic_umax,
3767    1,
3768    u8 AtomicU8
3769}
3770#[cfg(target_has_atomic_load_store = "16")]
3771atomic_int! {
3772    cfg(target_has_atomic = "16"),
3773    cfg(target_has_atomic_equal_alignment = "16"),
3774    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3775    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3776    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3777    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3778    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3779    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3780    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3781    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3782    rustc_diagnostic_item = "AtomicI16",
3783    "i16",
3784    "",
3785    atomic_min, atomic_max,
3786    2,
3787    i16 AtomicI16
3788}
3789#[cfg(target_has_atomic_load_store = "16")]
3790atomic_int! {
3791    cfg(target_has_atomic = "16"),
3792    cfg(target_has_atomic_equal_alignment = "16"),
3793    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3794    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3795    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3796    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3797    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3798    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3799    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3800    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3801    rustc_diagnostic_item = "AtomicU16",
3802    "u16",
3803    "",
3804    atomic_umin, atomic_umax,
3805    2,
3806    u16 AtomicU16
3807}
3808#[cfg(target_has_atomic_load_store = "32")]
3809atomic_int! {
3810    cfg(target_has_atomic = "32"),
3811    cfg(target_has_atomic_equal_alignment = "32"),
3812    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3813    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3814    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3815    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3816    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3817    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3818    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3819    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3820    rustc_diagnostic_item = "AtomicI32",
3821    "i32",
3822    "",
3823    atomic_min, atomic_max,
3824    4,
3825    i32 AtomicI32
3826}
3827#[cfg(target_has_atomic_load_store = "32")]
3828atomic_int! {
3829    cfg(target_has_atomic = "32"),
3830    cfg(target_has_atomic_equal_alignment = "32"),
3831    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3832    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3833    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3834    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3835    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3836    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3837    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3838    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3839    rustc_diagnostic_item = "AtomicU32",
3840    "u32",
3841    "",
3842    atomic_umin, atomic_umax,
3843    4,
3844    u32 AtomicU32
3845}
3846#[cfg(target_has_atomic_load_store = "64")]
3847atomic_int! {
3848    cfg(target_has_atomic = "64"),
3849    cfg(target_has_atomic_equal_alignment = "64"),
3850    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3851    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3852    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3853    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3854    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3855    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3856    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3857    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3858    rustc_diagnostic_item = "AtomicI64",
3859    "i64",
3860    "",
3861    atomic_min, atomic_max,
3862    8,
3863    i64 AtomicI64
3864}
3865#[cfg(target_has_atomic_load_store = "64")]
3866atomic_int! {
3867    cfg(target_has_atomic = "64"),
3868    cfg(target_has_atomic_equal_alignment = "64"),
3869    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3870    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3871    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3872    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3873    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3874    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3875    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3876    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3877    rustc_diagnostic_item = "AtomicU64",
3878    "u64",
3879    "",
3880    atomic_umin, atomic_umax,
3881    8,
3882    u64 AtomicU64
3883}
3884#[cfg(target_has_atomic_load_store = "128")]
3885atomic_int! {
3886    cfg(target_has_atomic = "128"),
3887    cfg(target_has_atomic_equal_alignment = "128"),
3888    unstable(feature = "integer_atomics", issue = "99069"),
3889    unstable(feature = "integer_atomics", issue = "99069"),
3890    unstable(feature = "integer_atomics", issue = "99069"),
3891    unstable(feature = "integer_atomics", issue = "99069"),
3892    unstable(feature = "integer_atomics", issue = "99069"),
3893    unstable(feature = "integer_atomics", issue = "99069"),
3894    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3895    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3896    rustc_diagnostic_item = "AtomicI128",
3897    "i128",
3898    "#![feature(integer_atomics)]\n\n",
3899    atomic_min, atomic_max,
3900    16,
3901    i128 AtomicI128
3902}
3903#[cfg(target_has_atomic_load_store = "128")]
3904atomic_int! {
3905    cfg(target_has_atomic = "128"),
3906    cfg(target_has_atomic_equal_alignment = "128"),
3907    unstable(feature = "integer_atomics", issue = "99069"),
3908    unstable(feature = "integer_atomics", issue = "99069"),
3909    unstable(feature = "integer_atomics", issue = "99069"),
3910    unstable(feature = "integer_atomics", issue = "99069"),
3911    unstable(feature = "integer_atomics", issue = "99069"),
3912    unstable(feature = "integer_atomics", issue = "99069"),
3913    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3914    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3915    rustc_diagnostic_item = "AtomicU128",
3916    "u128",
3917    "#![feature(integer_atomics)]\n\n",
3918    atomic_umin, atomic_umax,
3919    16,
3920    u128 AtomicU128
3921}
3922
3923#[cfg(target_has_atomic_load_store = "ptr")]
3924macro_rules! atomic_int_ptr_sized {
3925    ( $($target_pointer_width:literal $align:literal)* ) => { $(
3926        #[cfg(target_pointer_width = $target_pointer_width)]
3927        atomic_int! {
3928            cfg(target_has_atomic = "ptr"),
3929            cfg(target_has_atomic_equal_alignment = "ptr"),
3930            stable(feature = "rust1", since = "1.0.0"),
3931            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3932            stable(feature = "atomic_debug", since = "1.3.0"),
3933            stable(feature = "atomic_access", since = "1.15.0"),
3934            stable(feature = "atomic_from", since = "1.23.0"),
3935            stable(feature = "atomic_nand", since = "1.27.0"),
3936            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3937            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3938            rustc_diagnostic_item = "AtomicIsize",
3939            "isize",
3940            "",
3941            atomic_min, atomic_max,
3942            $align,
3943            isize AtomicIsize
3944        }
3945        #[cfg(target_pointer_width = $target_pointer_width)]
3946        atomic_int! {
3947            cfg(target_has_atomic = "ptr"),
3948            cfg(target_has_atomic_equal_alignment = "ptr"),
3949            stable(feature = "rust1", since = "1.0.0"),
3950            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3951            stable(feature = "atomic_debug", since = "1.3.0"),
3952            stable(feature = "atomic_access", since = "1.15.0"),
3953            stable(feature = "atomic_from", since = "1.23.0"),
3954            stable(feature = "atomic_nand", since = "1.27.0"),
3955            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3956            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3957            rustc_diagnostic_item = "AtomicUsize",
3958            "usize",
3959            "",
3960            atomic_umin, atomic_umax,
3961            $align,
3962            usize AtomicUsize
3963        }
3964
3965        /// An [`AtomicIsize`] initialized to `0`.
3966        #[cfg(target_pointer_width = $target_pointer_width)]
3967        #[stable(feature = "rust1", since = "1.0.0")]
3968        #[deprecated(
3969            since = "1.34.0",
3970            note = "the `new` function is now preferred",
3971            suggestion = "AtomicIsize::new(0)",
3972        )]
3973        pub const ATOMIC_ISIZE_INIT: AtomicIsize = AtomicIsize::new(0);
3974
3975        /// An [`AtomicUsize`] initialized to `0`.
3976        #[cfg(target_pointer_width = $target_pointer_width)]
3977        #[stable(feature = "rust1", since = "1.0.0")]
3978        #[deprecated(
3979            since = "1.34.0",
3980            note = "the `new` function is now preferred",
3981            suggestion = "AtomicUsize::new(0)",
3982        )]
3983        pub const ATOMIC_USIZE_INIT: AtomicUsize = AtomicUsize::new(0);
3984    )* };
3985}
3986
3987#[cfg(target_has_atomic_load_store = "ptr")]
3988atomic_int_ptr_sized! {
3989    "16" 2
3990    "32" 4
3991    "64" 8
3992}
3993
3994#[inline]
3995#[cfg(target_has_atomic)]
3996fn strongest_failure_ordering(order: Ordering) -> Ordering {
3997    match order {
3998        Release => Relaxed,
3999        Relaxed => Relaxed,
4000        SeqCst => SeqCst,
4001        Acquire => Acquire,
4002        AcqRel => Acquire,
4003    }
4004}
4005
4006#[inline]
4007#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4008unsafe fn atomic_store<T: Copy>(dst: *mut T, val: T, order: Ordering) {
4009    // SAFETY: the caller must uphold the safety contract for `atomic_store`.
4010    unsafe {
4011        match order {
4012            Relaxed => intrinsics::atomic_store::<T, { AO::Relaxed }>(dst, val),
4013            Release => intrinsics::atomic_store::<T, { AO::Release }>(dst, val),
4014            SeqCst => intrinsics::atomic_store::<T, { AO::SeqCst }>(dst, val),
4015            Acquire => panic!("there is no such thing as an acquire store"),
4016            AcqRel => panic!("there is no such thing as an acquire-release store"),
4017        }
4018    }
4019}
4020
4021#[inline]
4022#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4023unsafe fn atomic_load<T: Copy>(dst: *const T, order: Ordering) -> T {
4024    // SAFETY: the caller must uphold the safety contract for `atomic_load`.
4025    unsafe {
4026        match order {
4027            Relaxed => intrinsics::atomic_load::<T, { AO::Relaxed }>(dst),
4028            Acquire => intrinsics::atomic_load::<T, { AO::Acquire }>(dst),
4029            SeqCst => intrinsics::atomic_load::<T, { AO::SeqCst }>(dst),
4030            Release => panic!("there is no such thing as a release load"),
4031            AcqRel => panic!("there is no such thing as an acquire-release load"),
4032        }
4033    }
4034}
4035
4036#[inline]
4037#[cfg(target_has_atomic)]
4038#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4039unsafe fn atomic_swap<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4040    // SAFETY: the caller must uphold the safety contract for `atomic_swap`.
4041    unsafe {
4042        match order {
4043            Relaxed => intrinsics::atomic_xchg::<T, { AO::Relaxed }>(dst, val),
4044            Acquire => intrinsics::atomic_xchg::<T, { AO::Acquire }>(dst, val),
4045            Release => intrinsics::atomic_xchg::<T, { AO::Release }>(dst, val),
4046            AcqRel => intrinsics::atomic_xchg::<T, { AO::AcqRel }>(dst, val),
4047            SeqCst => intrinsics::atomic_xchg::<T, { AO::SeqCst }>(dst, val),
4048        }
4049    }
4050}
4051
4052/// Returns the previous value (like __sync_fetch_and_add).
4053#[inline]
4054#[cfg(target_has_atomic)]
4055#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4056unsafe fn atomic_add<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4057    // SAFETY: the caller must uphold the safety contract for `atomic_add`.
4058    unsafe {
4059        match order {
4060            Relaxed => intrinsics::atomic_xadd::<T, U, { AO::Relaxed }>(dst, val),
4061            Acquire => intrinsics::atomic_xadd::<T, U, { AO::Acquire }>(dst, val),
4062            Release => intrinsics::atomic_xadd::<T, U, { AO::Release }>(dst, val),
4063            AcqRel => intrinsics::atomic_xadd::<T, U, { AO::AcqRel }>(dst, val),
4064            SeqCst => intrinsics::atomic_xadd::<T, U, { AO::SeqCst }>(dst, val),
4065        }
4066    }
4067}
4068
4069/// Returns the previous value (like __sync_fetch_and_sub).
4070#[inline]
4071#[cfg(target_has_atomic)]
4072#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4073unsafe fn atomic_sub<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4074    // SAFETY: the caller must uphold the safety contract for `atomic_sub`.
4075    unsafe {
4076        match order {
4077            Relaxed => intrinsics::atomic_xsub::<T, U, { AO::Relaxed }>(dst, val),
4078            Acquire => intrinsics::atomic_xsub::<T, U, { AO::Acquire }>(dst, val),
4079            Release => intrinsics::atomic_xsub::<T, U, { AO::Release }>(dst, val),
4080            AcqRel => intrinsics::atomic_xsub::<T, U, { AO::AcqRel }>(dst, val),
4081            SeqCst => intrinsics::atomic_xsub::<T, U, { AO::SeqCst }>(dst, val),
4082        }
4083    }
4084}
4085
4086/// Publicly exposed for stdarch; nobody else should use this.
4087#[inline]
4088#[cfg(target_has_atomic)]
4089#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4090#[unstable(feature = "core_intrinsics", issue = "none")]
4091#[doc(hidden)]
4092pub unsafe fn atomic_compare_exchange<T: Copy>(
4093    dst: *mut T,
4094    old: T,
4095    new: T,
4096    success: Ordering,
4097    failure: Ordering,
4098) -> Result<T, T> {
4099    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange`.
4100    let (val, ok) = unsafe {
4101        match (success, failure) {
4102            (Relaxed, Relaxed) => {
4103                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4104            }
4105            (Relaxed, Acquire) => {
4106                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4107            }
4108            (Relaxed, SeqCst) => {
4109                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4110            }
4111            (Acquire, Relaxed) => {
4112                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4113            }
4114            (Acquire, Acquire) => {
4115                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4116            }
4117            (Acquire, SeqCst) => {
4118                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4119            }
4120            (Release, Relaxed) => {
4121                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4122            }
4123            (Release, Acquire) => {
4124                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4125            }
4126            (Release, SeqCst) => {
4127                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4128            }
4129            (AcqRel, Relaxed) => {
4130                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4131            }
4132            (AcqRel, Acquire) => {
4133                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4134            }
4135            (AcqRel, SeqCst) => {
4136                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4137            }
4138            (SeqCst, Relaxed) => {
4139                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4140            }
4141            (SeqCst, Acquire) => {
4142                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4143            }
4144            (SeqCst, SeqCst) => {
4145                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4146            }
4147            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4148            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4149        }
4150    };
4151    if ok { Ok(val) } else { Err(val) }
4152}
4153
4154#[inline]
4155#[cfg(target_has_atomic)]
4156#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4157unsafe fn atomic_compare_exchange_weak<T: Copy>(
4158    dst: *mut T,
4159    old: T,
4160    new: T,
4161    success: Ordering,
4162    failure: Ordering,
4163) -> Result<T, T> {
4164    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange_weak`.
4165    let (val, ok) = unsafe {
4166        match (success, failure) {
4167            (Relaxed, Relaxed) => {
4168                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4169            }
4170            (Relaxed, Acquire) => {
4171                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4172            }
4173            (Relaxed, SeqCst) => {
4174                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4175            }
4176            (Acquire, Relaxed) => {
4177                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4178            }
4179            (Acquire, Acquire) => {
4180                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4181            }
4182            (Acquire, SeqCst) => {
4183                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4184            }
4185            (Release, Relaxed) => {
4186                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4187            }
4188            (Release, Acquire) => {
4189                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4190            }
4191            (Release, SeqCst) => {
4192                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4193            }
4194            (AcqRel, Relaxed) => {
4195                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4196            }
4197            (AcqRel, Acquire) => {
4198                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4199            }
4200            (AcqRel, SeqCst) => {
4201                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4202            }
4203            (SeqCst, Relaxed) => {
4204                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4205            }
4206            (SeqCst, Acquire) => {
4207                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4208            }
4209            (SeqCst, SeqCst) => {
4210                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4211            }
4212            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4213            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4214        }
4215    };
4216    if ok { Ok(val) } else { Err(val) }
4217}
4218
4219#[inline]
4220#[cfg(target_has_atomic)]
4221#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4222unsafe fn atomic_and<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4223    // SAFETY: the caller must uphold the safety contract for `atomic_and`
4224    unsafe {
4225        match order {
4226            Relaxed => intrinsics::atomic_and::<T, U, { AO::Relaxed }>(dst, val),
4227            Acquire => intrinsics::atomic_and::<T, U, { AO::Acquire }>(dst, val),
4228            Release => intrinsics::atomic_and::<T, U, { AO::Release }>(dst, val),
4229            AcqRel => intrinsics::atomic_and::<T, U, { AO::AcqRel }>(dst, val),
4230            SeqCst => intrinsics::atomic_and::<T, U, { AO::SeqCst }>(dst, val),
4231        }
4232    }
4233}
4234
4235#[inline]
4236#[cfg(target_has_atomic)]
4237#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4238unsafe fn atomic_nand<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4239    // SAFETY: the caller must uphold the safety contract for `atomic_nand`
4240    unsafe {
4241        match order {
4242            Relaxed => intrinsics::atomic_nand::<T, U, { AO::Relaxed }>(dst, val),
4243            Acquire => intrinsics::atomic_nand::<T, U, { AO::Acquire }>(dst, val),
4244            Release => intrinsics::atomic_nand::<T, U, { AO::Release }>(dst, val),
4245            AcqRel => intrinsics::atomic_nand::<T, U, { AO::AcqRel }>(dst, val),
4246            SeqCst => intrinsics::atomic_nand::<T, U, { AO::SeqCst }>(dst, val),
4247        }
4248    }
4249}
4250
4251#[inline]
4252#[cfg(target_has_atomic)]
4253#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4254unsafe fn atomic_or<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4255    // SAFETY: the caller must uphold the safety contract for `atomic_or`
4256    unsafe {
4257        match order {
4258            SeqCst => intrinsics::atomic_or::<T, U, { AO::SeqCst }>(dst, val),
4259            Acquire => intrinsics::atomic_or::<T, U, { AO::Acquire }>(dst, val),
4260            Release => intrinsics::atomic_or::<T, U, { AO::Release }>(dst, val),
4261            AcqRel => intrinsics::atomic_or::<T, U, { AO::AcqRel }>(dst, val),
4262            Relaxed => intrinsics::atomic_or::<T, U, { AO::Relaxed }>(dst, val),
4263        }
4264    }
4265}
4266
4267#[inline]
4268#[cfg(target_has_atomic)]
4269#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4270unsafe fn atomic_xor<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4271    // SAFETY: the caller must uphold the safety contract for `atomic_xor`
4272    unsafe {
4273        match order {
4274            SeqCst => intrinsics::atomic_xor::<T, U, { AO::SeqCst }>(dst, val),
4275            Acquire => intrinsics::atomic_xor::<T, U, { AO::Acquire }>(dst, val),
4276            Release => intrinsics::atomic_xor::<T, U, { AO::Release }>(dst, val),
4277            AcqRel => intrinsics::atomic_xor::<T, U, { AO::AcqRel }>(dst, val),
4278            Relaxed => intrinsics::atomic_xor::<T, U, { AO::Relaxed }>(dst, val),
4279        }
4280    }
4281}
4282
4283/// Updates `*dst` to the max value of `val` and the old value (signed comparison)
4284#[inline]
4285#[cfg(target_has_atomic)]
4286#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4287unsafe fn atomic_max<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4288    // SAFETY: the caller must uphold the safety contract for `atomic_max`
4289    unsafe {
4290        match order {
4291            Relaxed => intrinsics::atomic_max::<T, { AO::Relaxed }>(dst, val),
4292            Acquire => intrinsics::atomic_max::<T, { AO::Acquire }>(dst, val),
4293            Release => intrinsics::atomic_max::<T, { AO::Release }>(dst, val),
4294            AcqRel => intrinsics::atomic_max::<T, { AO::AcqRel }>(dst, val),
4295            SeqCst => intrinsics::atomic_max::<T, { AO::SeqCst }>(dst, val),
4296        }
4297    }
4298}
4299
4300/// Updates `*dst` to the min value of `val` and the old value (signed comparison)
4301#[inline]
4302#[cfg(target_has_atomic)]
4303#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4304unsafe fn atomic_min<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4305    // SAFETY: the caller must uphold the safety contract for `atomic_min`
4306    unsafe {
4307        match order {
4308            Relaxed => intrinsics::atomic_min::<T, { AO::Relaxed }>(dst, val),
4309            Acquire => intrinsics::atomic_min::<T, { AO::Acquire }>(dst, val),
4310            Release => intrinsics::atomic_min::<T, { AO::Release }>(dst, val),
4311            AcqRel => intrinsics::atomic_min::<T, { AO::AcqRel }>(dst, val),
4312            SeqCst => intrinsics::atomic_min::<T, { AO::SeqCst }>(dst, val),
4313        }
4314    }
4315}
4316
4317/// Updates `*dst` to the max value of `val` and the old value (unsigned comparison)
4318#[inline]
4319#[cfg(target_has_atomic)]
4320#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4321unsafe fn atomic_umax<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4322    // SAFETY: the caller must uphold the safety contract for `atomic_umax`
4323    unsafe {
4324        match order {
4325            Relaxed => intrinsics::atomic_umax::<T, { AO::Relaxed }>(dst, val),
4326            Acquire => intrinsics::atomic_umax::<T, { AO::Acquire }>(dst, val),
4327            Release => intrinsics::atomic_umax::<T, { AO::Release }>(dst, val),
4328            AcqRel => intrinsics::atomic_umax::<T, { AO::AcqRel }>(dst, val),
4329            SeqCst => intrinsics::atomic_umax::<T, { AO::SeqCst }>(dst, val),
4330        }
4331    }
4332}
4333
4334/// Updates `*dst` to the min value of `val` and the old value (unsigned comparison)
4335#[inline]
4336#[cfg(target_has_atomic)]
4337#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4338unsafe fn atomic_umin<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4339    // SAFETY: the caller must uphold the safety contract for `atomic_umin`
4340    unsafe {
4341        match order {
4342            Relaxed => intrinsics::atomic_umin::<T, { AO::Relaxed }>(dst, val),
4343            Acquire => intrinsics::atomic_umin::<T, { AO::Acquire }>(dst, val),
4344            Release => intrinsics::atomic_umin::<T, { AO::Release }>(dst, val),
4345            AcqRel => intrinsics::atomic_umin::<T, { AO::AcqRel }>(dst, val),
4346            SeqCst => intrinsics::atomic_umin::<T, { AO::SeqCst }>(dst, val),
4347        }
4348    }
4349}
4350
4351/// An atomic fence.
4352///
4353/// Fences create synchronization between themselves and atomic operations or fences in other
4354/// threads. To achieve this, a fence prevents the compiler and CPU from reordering certain types of
4355/// memory operations around it.
4356///
4357/// There are 3 different ways to use an atomic fence:
4358///
4359/// - atomic - fence synchronization: an atomic operation with (at least) [`Release`] ordering
4360///   semantics synchronizes with a fence with (at least) [`Acquire`] ordering semantics.
4361/// - fence - atomic synchronization: a fence with (at least) [`Release`] ordering semantics
4362///   synchronizes with an atomic operation with (at least) [`Acquire`] ordering semantics.
4363/// - fence - fence synchronization: a fence with (at least) [`Release`] ordering semantics
4364///   synchronizes with a fence with (at least) [`Acquire`] ordering semantics.
4365///
4366/// These 3 ways complement the regular, fence-less, atomic - atomic synchronization.
4367///
4368/// ## Atomic - Fence
4369///
4370/// An atomic operation on one thread will synchronize with a fence on another thread when:
4371///
4372/// -   on thread 1:
4373///     -   an atomic operation 'X' with (at least) [`Release`] ordering semantics on some atomic
4374///         object 'm',
4375///
4376/// -   is paired on thread 2 with:
4377///     -   an atomic read 'Y' with any order on 'm',
4378///     -   followed by a fence 'B' with (at least) [`Acquire`] ordering semantics.
4379///
4380/// This provides a happens-before dependence between X and B.
4381///
4382/// ```text
4383///     Thread 1                                          Thread 2
4384///
4385/// m.store(3, Release); X ---------
4386///                                |
4387///                                |
4388///                                -------------> Y  if m.load(Relaxed) == 3 {
4389///                                               B      fence(Acquire);
4390///                                                      ...
4391///                                                  }
4392/// ```
4393///
4394/// ## Fence - Atomic
4395///
4396/// A fence on one thread will synchronize with an atomic operation on another thread when:
4397///
4398/// -   on thread:
4399///     -   a fence 'A' with (at least) [`Release`] ordering semantics,
4400///     -   followed by an atomic write 'X' with any ordering on some atomic object 'm',
4401///
4402/// -   is paired on thread 2 with:
4403///     -   an atomic operation 'Y' with (at least) [`Acquire`] ordering semantics.
4404///
4405/// This provides a happens-before dependence between A and Y.
4406///
4407/// ```text
4408///     Thread 1                                          Thread 2
4409///
4410/// fence(Release);      A
4411/// m.store(3, Relaxed); X ---------
4412///                                |
4413///                                |
4414///                                -------------> Y  if m.load(Acquire) == 3 {
4415///                                                      ...
4416///                                                  }
4417/// ```
4418///
4419/// ## Fence - Fence
4420///
4421/// A fence on one thread will synchronize with a fence on another thread when:
4422///
4423/// -   on thread 1:
4424///     -   a fence 'A' which has (at least) [`Release`] ordering semantics,
4425///     -   followed by an atomic write 'X' with any ordering on some atomic object 'm',
4426///
4427/// -   is paired on thread 2 with:
4428///     -   an atomic read 'Y' with any ordering on 'm',
4429///     -   followed by a fence 'B' with (at least) [`Acquire`] ordering semantics.
4430///
4431/// This provides a happens-before dependence between A and B.
4432///
4433/// ```text
4434///     Thread 1                                          Thread 2
4435///
4436/// fence(Release);      A --------------
4437/// m.store(3, Relaxed); X ---------    |
4438///                                |    |
4439///                                |    |
4440///                                -------------> Y  if m.load(Relaxed) == 3 {
4441///                                     |-------> B      fence(Acquire);
4442///                                                      ...
4443///                                                  }
4444/// ```
4445///
4446/// ## Mandatory Atomic
4447///
4448/// Note that in the examples above, it is crucial that the access to `m` are atomic. Fences cannot
4449/// be used to establish synchronization between non-atomic accesses in different threads. However,
4450/// thanks to the happens-before relationship, any non-atomic access that happen-before the atomic
4451/// operation or fence with (at least) [`Release`] ordering semantics are now also properly
4452/// synchronized with any non-atomic accesses that happen-after the atomic operation or fence with
4453/// (at least) [`Acquire`] ordering semantics.
4454///
4455/// ## Memory Ordering
4456///
4457/// A fence which has [`SeqCst`] ordering, in addition to having both [`Acquire`] and [`Release`]
4458/// semantics, participates in the global program order of the other [`SeqCst`] operations and/or
4459/// fences.
4460///
4461/// Accepts [`Acquire`], [`Release`], [`AcqRel`] and [`SeqCst`] orderings.
4462///
4463/// # Panics
4464///
4465/// Panics if `order` is [`Relaxed`].
4466///
4467/// # Examples
4468///
4469/// ```
4470/// use std::sync::atomic::AtomicBool;
4471/// use std::sync::atomic::fence;
4472/// use std::sync::atomic::Ordering;
4473///
4474/// // A mutual exclusion primitive based on spinlock.
4475/// pub struct Mutex {
4476///     flag: AtomicBool,
4477/// }
4478///
4479/// impl Mutex {
4480///     pub fn new() -> Mutex {
4481///         Mutex {
4482///             flag: AtomicBool::new(false),
4483///         }
4484///     }
4485///
4486///     pub fn lock(&self) {
4487///         // Wait until the old value is `false`.
4488///         while self
4489///             .flag
4490///             .compare_exchange_weak(false, true, Ordering::Relaxed, Ordering::Relaxed)
4491///             .is_err()
4492///         {}
4493///         // This fence synchronizes-with store in `unlock`.
4494///         fence(Ordering::Acquire);
4495///     }
4496///
4497///     pub fn unlock(&self) {
4498///         self.flag.store(false, Ordering::Release);
4499///     }
4500/// }
4501/// ```
4502#[inline]
4503#[stable(feature = "rust1", since = "1.0.0")]
4504#[rustc_diagnostic_item = "fence"]
4505#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4506pub fn fence(order: Ordering) {
4507    // SAFETY: using an atomic fence is safe.
4508    unsafe {
4509        match order {
4510            Acquire => intrinsics::atomic_fence::<{ AO::Acquire }>(),
4511            Release => intrinsics::atomic_fence::<{ AO::Release }>(),
4512            AcqRel => intrinsics::atomic_fence::<{ AO::AcqRel }>(),
4513            SeqCst => intrinsics::atomic_fence::<{ AO::SeqCst }>(),
4514            Relaxed => panic!("there is no such thing as a relaxed fence"),
4515        }
4516    }
4517}
4518
4519/// A "compiler-only" atomic fence.
4520///
4521/// Like [`fence`], this function establishes synchronization with other atomic operations and
4522/// fences. However, unlike [`fence`], `compiler_fence` only establishes synchronization with
4523/// operations *in the same thread*. This may at first sound rather useless, since code within a
4524/// thread is typically already totally ordered and does not need any further synchronization.
4525/// However, there are cases where code can run on the same thread without being ordered:
4526/// - The most common case is that of a *signal handler*: a signal handler runs in the same thread
4527///   as the code it interrupted, but it is not ordered with respect to that code. `compiler_fence`
4528///   can be used to establish synchronization between a thread and its signal handler, the same way
4529///   that `fence` can be used to establish synchronization across threads.
4530/// - Similar situations can arise in embedded programming with interrupt handlers, or in custom
4531///   implementations of preemptive green threads. In general, `compiler_fence` can establish
4532///   synchronization with code that is guaranteed to run on the same hardware CPU.
4533///
4534/// See [`fence`] for how a fence can be used to achieve synchronization. Note that just like
4535/// [`fence`], synchronization still requires atomic operations to be used in both threads -- it is
4536/// not possible to perform synchronization entirely with fences and non-atomic operations.
4537///
4538/// `compiler_fence` does not emit any machine code, but restricts the kinds of memory re-ordering
4539/// the compiler is allowed to do. `compiler_fence` corresponds to [`atomic_signal_fence`] in C and
4540/// C++.
4541///
4542/// [`atomic_signal_fence`]: https://en.cppreference.com/w/cpp/atomic/atomic_signal_fence
4543///
4544/// # Panics
4545///
4546/// Panics if `order` is [`Relaxed`].
4547///
4548/// # Examples
4549///
4550/// Without the two `compiler_fence` calls, the read of `IMPORTANT_VARIABLE` in `signal_handler`
4551/// is *undefined behavior* due to a data race, despite everything happening in a single thread.
4552/// This is because the signal handler is considered to run concurrently with its associated
4553/// thread, and explicit synchronization is required to pass data between a thread and its
4554/// signal handler. The code below uses two `compiler_fence` calls to establish the usual
4555/// release-acquire synchronization pattern (see [`fence`] for an image).
4556///
4557/// ```
4558/// use std::sync::atomic::AtomicBool;
4559/// use std::sync::atomic::Ordering;
4560/// use std::sync::atomic::compiler_fence;
4561///
4562/// static mut IMPORTANT_VARIABLE: usize = 0;
4563/// static IS_READY: AtomicBool = AtomicBool::new(false);
4564///
4565/// fn main() {
4566///     unsafe { IMPORTANT_VARIABLE = 42 };
4567///     // Marks earlier writes as being released with future relaxed stores.
4568///     compiler_fence(Ordering::Release);
4569///     IS_READY.store(true, Ordering::Relaxed);
4570/// }
4571///
4572/// fn signal_handler() {
4573///     if IS_READY.load(Ordering::Relaxed) {
4574///         // Acquires writes that were released with relaxed stores that we read from.
4575///         compiler_fence(Ordering::Acquire);
4576///         assert_eq!(unsafe { IMPORTANT_VARIABLE }, 42);
4577///     }
4578/// }
4579/// ```
4580#[inline]
4581#[stable(feature = "compiler_fences", since = "1.21.0")]
4582#[rustc_diagnostic_item = "compiler_fence"]
4583#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4584pub fn compiler_fence(order: Ordering) {
4585    // SAFETY: using an atomic fence is safe.
4586    unsafe {
4587        match order {
4588            Acquire => intrinsics::atomic_singlethreadfence::<{ AO::Acquire }>(),
4589            Release => intrinsics::atomic_singlethreadfence::<{ AO::Release }>(),
4590            AcqRel => intrinsics::atomic_singlethreadfence::<{ AO::AcqRel }>(),
4591            SeqCst => intrinsics::atomic_singlethreadfence::<{ AO::SeqCst }>(),
4592            Relaxed => panic!("there is no such thing as a relaxed fence"),
4593        }
4594    }
4595}
4596
4597#[cfg(target_has_atomic_load_store = "8")]
4598#[stable(feature = "atomic_debug", since = "1.3.0")]
4599impl fmt::Debug for AtomicBool {
4600    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4601        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4602    }
4603}
4604
4605#[cfg(target_has_atomic_load_store = "ptr")]
4606#[stable(feature = "atomic_debug", since = "1.3.0")]
4607impl<T> fmt::Debug for AtomicPtr<T> {
4608    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4609        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4610    }
4611}
4612
4613#[cfg(target_has_atomic_load_store = "ptr")]
4614#[stable(feature = "atomic_pointer", since = "1.24.0")]
4615impl<T> fmt::Pointer for AtomicPtr<T> {
4616    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4617        fmt::Pointer::fmt(&self.load(Ordering::Relaxed), f)
4618    }
4619}
4620
4621/// Signals the processor that it is inside a busy-wait spin-loop ("spin lock").
4622///
4623/// This function is deprecated in favor of [`hint::spin_loop`].
4624///
4625/// [`hint::spin_loop`]: crate::hint::spin_loop
4626#[inline]
4627#[stable(feature = "spin_loop_hint", since = "1.24.0")]
4628#[deprecated(since = "1.51.0", note = "use hint::spin_loop instead")]
4629pub fn spin_loop_hint() {
4630    spin_loop()
4631}